
CML Microcircuits

COMMUNICATION SEMICONDUCTORS

Application Note

AN / Telecom / CMX850 /2 October 2003

CMX850 - 8051 Architectural
Overview, Programmer's

Guide and Hardware
Description

Page 1 of 51

TABLE OF CONTENTS

CMX850 Introduction and Overview .. 2
Memory Organisation ... 2

Dual Data Pointers... 5
XRAM Access and the MEMCON register... 6
Burst Mode Memory Access .. 7
MUXAD.. 7
Local Boot ROM... 10

Special Function Registers .. 12
I/O Ports ... 14
Power Map ... 16
Timers & Counters .. 17

Real Time Clock (RTC) and Alarm Registers .. 17
Watch-Dog Timers (WDT) ... 19

Serial Port Interface .. 20
Setting the Serial Port Mode.. 20
Setting the Serial Port Baud Rate .. 22
Writing to the Serial Port.. 24
Reading the Serial Port.. 25
RS232 Connection to a PC.. 25

CAS/FSK Detector Block .. 26
Interrupts.. 27

Interrupt Sources and Vector Addresses ... 27
Enabling & Disabling Interrupts.. 29
Interrupt Priorities .. 29
Interrupt Handling .. 29
Interrupt Activation Levels.. 30

Instructions & Addressing.. 31
CMX850 Instruction Set... 31
Addressing Modes... 46

Direct Addressing... 46
Indirect Addressing .. 47
Register Addressing... 47
Immediate Addressing.. 47
Indexed Addressing ... 47

Conclusion... 47
Appendix.. 48
References... 50

Page 2 of 51

CMX850 Introduction and Overview

The CMX850 combines an enhanced 8051 Microcontroller with a feature-rich V.22bis
(2400bps) modem to create the platform for a powerful and flexible telecom processor. In
addition to its many 8051-Microcontroller enhancements, the CMX850 supports all of the
standard 8051 features and instructions as well. This application note provides supplemental
information regarding CMX850 operation and programming and should be used in
conjunction with the CMX850 data sheet.

The following table provides detail on the differences between the standard 8051
Microcontroller and the enhanced 8051 Microcontroller contained in the CMX850:

Feature Standard 8051 CMX850 8051
On-chip data memory 128 bytes 256 bytes
On-chip data XRAM 0 8k bytes
On-chip program memory >4k bytes 0
Address space for external RAM 64k bytes 64k bytes
Address space for external ROM 64k bytes

(Can be increased
with additional
components)

64k bytes,
(Can be increased
beyond 4Mbytes
using minimal
additional
components)

Non-multiplexed memory interface No Yes
General Purpose I/O Lines 32 35
I/O Ports 4 6
Port direction control registers to minimize
power consumption?

No Yes

Interrupt Sources 5 13
“Super Priority” interrupt pin? No Yes
Data Pointers 1 2
Continuous program memory reads? Yes No (for reduced

power consumption)
Time stretching of external memory fetches? No Yes
Number of oscillator cycles per machine
cycle

12 12

Number of timer/counters 2 2 (plus Real Time
Clock & Watchdog
timer)

Keyboard decoder? No Yes
Number of ADC 0 2
Number of PWM 0 2
Real-time clock & alarm? No Yes
Advanced oscillator & powersave controls? No Yes (multiple

schemes)
Watchdog timer No Yes

Table 1: Comparison of CMX850 8051 and Standard 8051 Micro Controllers

Memory Organisation

The CMX850 memory structure is identical to the standard 8051 memory structure. There is
internal memory space for short-term data, variables, vectors and routines, while external
memory is used for program code and additional Data. Unlike many other memory structures,
the 8051 is not flat and continuous; the internal memory space between $7F and $FF
contains two 128 byte addressable memory locations in parallel (IDATA RAM and the SFR)
that can be addressed separately.

Page 3 of 51

Referring to Figure 1, there are a total of 256 bytes of internal rewriteable scratchpad memory
(RAM). The lower 128 bytes can be addressed directly and indirectly and is common with the
8051 format. This lower section of RAM includes four banks of memory (eight registers per
bank, addresses $00 through $1F) that can be used as register space enabling rapid
exchange of interrupt data. This could typically be used in multitasking software where the
quick set-up of routine data is essential.

Address space $20 to $2F is bit addressable making it particularly useful for flag settings etc.
Details of the specific 8051 bit operations can be found later in this document.

The upper 128 bytes of internal RAM can only be used in indirect addressing mode. This
limited addressing method means that another 128 bytes of address space can be created
which can be directly addressed only, and it is in these 128 bytes that the SFRs (Special
Function Registers) reside. More details on the SFRs are provided later in this document.

Figure 2 shows how the remaining memory is structured; the additional 8kB of XRAM is
discussed later is this section. The three external CSN pins, labelled CSN1, CSN2 and
CSN3, allow for the direct addressing of three 64kbyte memory blocks without the need for
external de-multiplexing of the data and address lines.

CSN1 is by default the base address for all user programs and where program reset vectors
and interrupts normally reside. Details of how to map 8kB of the external memory to the
XRAM are discussed later in this chapter.

Using a combination of standard port pins it is also possible to enlarge the memory further by
addressing additional sections of memory. This is called “page switching” or banking.

Page 4 of 51

Special Function Registers
(SFR)

Directly Addressable Only

Data memory
Indirectly Addressable Only

Internal memory

Bank 0

Bank 1

Bank 2

Bank 3

Bit addressable memory

Data memory
Directly and Indirectly

Addressable

$00

$FF

$FF

$80

$80

$30

$20

B2, Register 7

B2, Register 6

B2, Register 5

B2, Register 4

B2, Register 3

B2, Register 2

B2, Register 1

B2, Register 0

$08

$10

$18 $10

$11

$12

$13

$14

$15

$16

$17

BOOT ROM
(Not memory mapped, not

accessible)

Figure 1: CMX850 Internal Memory Map

Page 5 of 51

Internal Extended Memory

XRAM

$0000

$1FFF

$FFFF

External, Extended
and Program

Memory

$0000

$2000

Reset vector

Interrupt Vectors

$0074

Additional Memory

CSN1

CSN2

CSN3

Figure 2: Additional Memory Map

Dual Data Pointers

The original 8051 core had one data pointer but the CMX850 has two, and this makes
transfers of data blocks throughout the extended memory space quicker and easier. The
CMX850 data pointers are each mapped into a high and low register within the SFR space;
DPL and DPH ($82, $83) for the first data pointer and DPL1 and DPH1 ($84, $85) for the
second data pointer. The currently selected data pointer is determined by bit 0 of the DPS
SFR ($86).

The software routine below demonstrates one method of moving a block of data in external
memory.

; SH and SL are high and low byte source address.
; DH and DL are high and low byte of destination address.
; DPS is the data pointer select. Reset condition is DPS=0, DPTR0 is selected.

DPS EQU $86 ;Acknowledge data pointer select
MOV R5, #64 ;#64 bytes to move in total
MOV DPTR, #DHDL ;Load destination address into DPTR0
INC DPS ;Change active data pointer

Page 6 of 51

MOV DPTR, #SHSL ;Load source address onto DPTR1

; The following code loops X number of times, X being the value to be found in register 5

MOVE:
MOVX A, @DPTR ;Read source data byte from DPTR1
INC DPTR ;Increment to the next destination address
INC DPS ;Change data pointer to the destination at DPTR0
MOVX @DPTR, A ;Write data to destination
INC DPTR ;Increment to the next source address
INC DPS ;Change data pointer to source
DJNZ R5, MOVE ;All data moved?
INC DPS ;Leave DPTR0 selected

XRAM Access and the MEMCON register

Extended internal memory (over and above the scratchpad memory) is available in the form
of 8kB of XRAM. Normal program memory is situated externally from the CMX850 where the
memory will typically be in the form of ROM, FLASH or EEPROM. However, the bottom 8kB
of external program memory can be mapped into the internal XRAM if required.

The MEMCON register (SFR $FA) allows the MOVX instruction to point either to external
memory or the internal XRAM. Please note that extra care must be taken when the
destination of the MOVX command is altered while the program is being executed from
XDATA.

Bit
Position

Bit Setting

 1 0

7
Enable data pin
bus-holding
devices

Disable data pin
bus-holding
devices

6

On-chip XRAM
mapped into
bottom 8Kbytes of
program memory

Program memory
is entirely off-chip

5

MOVX write
operations are
stretched by one
machine cycle (12
xtal cycles)

MOVX write
operations are
not stretched

4

3

00 - MOVX write
destination is on-
chip XRAM

01 - 0 1 MOVX
write destination
is off-chip, using
pin CSN1

10 - MOVX
write
destination is
off-chip, using
pin CSN2

11 - MOVX
write
destination is
off-chip, using
pin CSN3

2

MOVX read
operations are
stretched by one
machine cycle (12
xtal cycles)

MOVX read
operations are
not stretched

1

0

00 - MOVX read
source is on-chip
XRAM

01 - MOVX read
source is off-chip,
using pin CSN1

10 - MOVX
read source is
off-chip, using
pin CSN2

11- MOVX read
source is off-
chip, using pin
CSN3

Table 2: MEMCON Bit Descriptions

The ability to be able to run small pieces of code internally makes it possible for the CMX850
to dynamically update its external program memory if it is located in FLASH memory. A
typical scenario would be to serially download a new program via the CMX850 under the

Page 7 of 51

control of a “Thin Stub” routine into the XRAM which would then direct a further download to
the external FLASH memory. This set-up makes board designs a lot simpler and adds
convenience to systems where code can be upgraded in the field.

NOTE: The term “thin stub” refers to a section of software that is attached to the main code to
perform a simple download function. In the case of the CMX850, a thin stub resides in the
external program memory and allows new program code to be downloaded into FLASH
memory. If the thin stub were not present then the FLASH memory would have to be
removed and programmed in an external programmer.

Note: The thin stub is described later in this section.

It is also possible to increase the number of cycles required to perform a MOVX instruction.
This is a very useful feature where if, for example, external memory access is slower than the
current instruction cycle time. Bits 2 and 5 of the MEMCON Register are available to perform
this stretch of instruction time, making it possible to update memory access in “real time”.

MEMCON Bit 7 makes it possible to reduce power consumption when the data or address
bus is idling over long periods of time, or if the CMX850 is in a powered down state. It works
by holding onto the bus very weakly, when used with an inactive bus, the bus follows the
peripheral pins idle state. E.g. if the peripheral pin defaults to Vdd the CMX850 pin will follow.

Burst Mode Memory Access

One of the CMX850 power saving features is a reduced clocking speed combined with a
“burst mode” memory access that allows external memory accesses to be kept to the
absolute minimum. When used in concert with the CMX850’s advanced power management
features, the burst mode memory access can help reduce power consumption considerably.

It achieves this because certain memory devices only power up while they are being
accessed from the micro controller. By burst writing or reading the data to and from the
memory device, “full power” is only required for the time the bus is active, the remaining time
the memory device can be powered down.

The effect of this type of arrangement is to reduce the average power consumed in each
cycle. This method makes much better use of the available power than a slow read or write
access, where the memory is active for much longer.

MUXAD

The MUXAD pin makes it possible to multiplex both data and address lines onto the same
bus, thus making it possible to use I/O pins for multiple tasks. The illustration below shows
what pins are freed and what additional components (address latch) are required when using
the MUXAD pin.

Note: When MUXAD is disabled the port addresses in the SFR (P0.0..0.2 & P5.5..5.7),
become a bit addressable memory location. They can be treated as extra register space.

The 9INT super priority interrupt input and upper three columns of the keyboard decoder
are also not available.

Page 8 of 51

Address Latch
FLASH RAM

A0..A7

FLASH RAM

Port
P5.0..5.7

CSN2
CSN1

Address Lines
A15..A8

Port
P0.0..0.2

Address Lines A7..A0 +
Data Lines D7..D0

ALE

OEN
WEN

MUXAD Pin = 1 (Mutiplxed address
and data lines)

MUXAD Pin = 0 (Address and data
lines seperate)

Port
P5.0..5.4

CSN2
CSN1

Data Lines D7..D0

OEN
WEN

Address Lines
A15..A0

9INT

General Purpose I/O

Figure 3: Effect of MUXAD on External Memory Accesses

NOTE: Port 0 pins do not have memory address/data driven onto them during an external
memory access, as would happen on a standard 8051 Microcontroller. The CMX850 external
memory interface is completely separate from the Port 0 circuit. With the MUXAD pin set to
0, only port pins 5.0 to 5.4 remain available for use. P2 is retained internally and is placed
into A8..15 of the bus during MOVX instructions using @Ri addressing.

With the MUXAD pin asserted, access to data is time multiplexed with the lower 8 address
lines. See illustration below for timing details. The program still address the data as normal,
but now Port 5 is entirely available for I/O and bits D0..2 of port 0 have been freed up for other
purposes.

Page 9 of 51

 EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA READ CYCLE

EXTERNAL DATA WRITE CYCLE

OEN

OEN

WEN

CSN1

CSN1/2/3

CSN1/2/3

A15-0

A15-0

A15-0

D7-0

D7-0

D7-0

INSTR. IN INSTR. IN

INSTR. IN

INSTR. IN

T SHSL

T SHSL2

T SHSL T AVSL

T AVSL

T AVIV

T SLAZ T SLSH
T SLAZ

T SXIX

T SXIX T SXIZ

T SXIZ T SLIV

T SLIV
T SLSH

T AVSL2

T AVSL2

T AVSL2

DATA IN
T SXDX

T SXDX

T SLDV

T SLDV
T SLSH2

T AVDV

T SLSH2

T SLSH2

T SXDZ

T SXDZ

DATA OUT
T SHQX

T SHWH T WLSL

T QVSL

T WLWH T AVWL

Figure 4: Non-Multiplexed Memory Interface Timing Diagrams

Page 10 of 51

ALE

ALE

ALE

EXTERNAL PROGRAM MEMORY READ CYCLE

EXTERNAL DATA READ CYCLE

EXTERNAL DATA WRITE CYCLE

OEN

OEN

WEN

CSN1

CSN1/2/3

CSN1/2/3

A15-8

A15-8

A15-8

A7-0

A7-0

A7-0

INSTR. ININSTR. IN

INSTR. IN

INSTR. IN

TLHLL

TLHLL

TSHSL

TSHSL2

TSHSL
TAVSL

TAVSL

TLLAX

TAVIV

TSLSH
TSXIX

TSXIX
TSXIZ

TSXIZTSLIV

TSLIV

TSLSH

TAVLL

TAVSL2

TAVSL2

TAVSL2

DATA IN

TSXDX

TSXDX

TSLDV

TSLDV

TSLSH2

TAVDV

TAVLL TLLAX

TSLSH2

TSLSH2

TSXDZ

TSXDZ

DATA OUT

TSHQX

TSHWHTWLSL

TQVSL

TWLWH

TAVLL

TAVWL

TLLAX

TLHLL

Figure 5: Multiplexed Memory Interface Timing Diagrams

Local Boot ROM

It is common practice to include functions that allow for memory downloads while the micro
controller remains soldered to the application board. The wide spread use of low cost FLASH
memory has made this not only possible but desirable. In Circuit Programming is supported
in the CMX850 by the use of hardwired "Thin Stub" located on chip.

The Thin Stub is used here to describe a small section of code that resides in ROM within the
CMX850. Its function is to set-up the CMX850 serial port following a reset ready for the
download of a Fat Stub software routine. The Fat Stub, which is another software routine, is
downloaded from the host programmer. Following this download the Thick Stub is situated in
the 8K of internal XRAM and organises the FLASH download.

Page 11 of 51

Thin Stub

Details of the Boot ROM power up sequence can be found in the CMX850 data sheet (from
revision D/850/5), for reference however it is as follows:

Power Up CMX850
RESETN Pin = AVSS
VBIAS Pin = short to AVDD
2.5 Sec Delay
RESETN Pin = AVDD
1uS Delay
VBIAS Pin = remove short
The CMX850 is now in Boot Rom mode and the serial port is ready to accept the Thick Stub
(19K2, 8 bits no parity, 1 stop bit)

Thick Stub

The Thick Stub is subsequently downloaded via the serial port automatically into the 8kB
XRAM, from where it takes control of the serial port, external memory control and addressing
of the FLASH.

The Thick Stub must ensure that binary data is only loaded when ready (by controlling the
RS232 handshake lines via software allocated port pins or by using a Xon/Xoff software
routine if only the RXD and TXD pins are to be used. It may also flag an error if there is a
FLASH boundary overrun, incorrect FLASH ID code, non-functional FLASH etc.

The Thick Stub will also need to control memory access of the FLASH memory as well as be
able to control the writes to the command register according to the FLASH requirements.

Note: Example Thick Stub software is provided with the EV8500 Evaluation Kit.

Page 12 of 51

Special Function Registers

The special function registers (SFR) are used with the 8051 architecture as a means of
adding extra functionality to a Microcontroller without making any radical software changes.
The SFRs are accessible via direct addressing of the upper 128 bytes of internal RAM ($80 to
$FF).

Within the CMX850 the SFR’s are organized as follows:

(lsb) '..... 000' '..... 001' '..... 010' '..... 011' '..... 100' '..... 101' '..... 110' '..... 111'
$F8 MEMCON RTCCON TIME0 TIME1 TIME2 TIME3
$F0 (B) WDTCON WDTLD ALM0 ALM1 ALM2 ALM3
$E8 CASDET CBUSCON CBUSBUF KBCON KBSTAT KBBUF
$E0 (ACC) ADCCON1 ADCCON2 ADCBUFL ADCBUFH ADCTHRL ADCTHRH
$D8 P5 P5DIR P5OD P5RES PWMCON PWM1 PWM2
$D0 (PSW) FSKBUF
$C8
$C0 P4 P4DIR P4OD P4RES
$B8 (IP) IP_1
$B0 (P3) P3DIR P3OD P3RES
$A8 (IE) IE_1 ICON1A ICON1B
$A0 (P2)
$98 (SCON) (SBUF) OSCCON SPDCON SPXMASK PDXMASK
$90 (P1) P1DIR P1OD P1RES P0DIR
$88 (TCON) (TMOD) (TL0) (TL1) (TH0) (TH1)
$80 (P0) (SP) (DPL) (DPH) DPL1 DPH1 DPS (PCON)

Bit
Addressable

Standard 80C51 SFRs are shown in parentheses

Table 3: CMX850 SFR Map

The SFRs within parentheses are the basic 8051 SFRs and will be found on all 8051 based
cores; the remaining registers are CMX850 specific. Additionally each register is further
broken down in the following bit addressed table.

Memory Address
(Bit addressable)

Abbreviation Register
Data Sheet

Section

 Hex Binary
 FA 11111010 MEMCON Memory Control Register 1.5.4.1

FB 11111011 RTCCON
Real Time Clock Control

Register
1.5.12.1

FC 11111100 TIME0

Real Time Clock Time
Register 0

1.5.12.2

FD 11111101 TIME1

Real Time Clock Time
Register 1

1.5.12.2

FE 11111110 TIME2

Real Time Clock Time
Register 2

1.5.12.2

FF 11111111 TIME3

Real Time Clock Time
Register 3

1.5.12.2

* F0 11110000 (B) B Register 1.5.14.1
 F2 11110010 WDTCON Watchdog Control Register 1.5.11.1
 F3 11110011 WDTLD Watchdog Load Register 1.5.11.2

F4 11110100 ALM0
Real Time Clock Alarm

Register 0
1.5.12.3

F5 11110101 ALM1

Real Time Clock Alarm
Register 1

1.5.12.3

F6 11110110 ALM2

Real Time Clock Alarm
Register 2

1.5.12.3

F7 11110111 ALM3

Real Time Clock Alarm
Register 3

1.5.12.3

 E9 11101001 CASDET CAS Detect Control Register 1.5.13.1
 EA 11101010 CBUSCON C-Bus Control Register 1.5.9.1
 EB 11101011 CBUSBUF C-Bus Buffer Register 1.5.9.2

Page 13 of 51

 EC 11101100 KBCON Keyboard Control Register 1.5.10.1
 ED 11101101 KBSTAT Keyboard Status Register 1.5.10.2
 EE 11101110 KBBUF Keyboard Buffer Register 1.5.10.3
* E0 11100000 (ACC) Accumulator 1.5.14.1
 E2 11100010 ADCCON1 ADC 1 Control Register 1.5.8.1
 E3 11100011 ADCCON2 ADC 2 Control Register 1.5.8.1
 E4 11100100 ADCBUFL ADC Low Buffer Register 1.5.8.2
 E5 11100101 ADCBUFH ADC High Buffer Register 1.5.8.2
 E6 11100110 ADCTHRL ADC Low Threshold Register 1.5.8.3
 E7 11100111 ADCTHRH ADC High Threshold Register 1.5.8.3
* D8 11011000 P5 Port 5 1.5.3.1
 D9 11011001 P5DIR Port 5 Direction Register 1.5.3.2
 DA 11011010 P5OD Port 5 Open-Drain Register 1.5.3.3

DB 11011011 P5RES
Port 5 Resistor Pull-Up

Register
1.5.3.4

 DD 11011101 PWMCON PWM Control Register 1.5.7.1
 DE 11011110 PWM1 PWM 1 Data Register 1.5.7.2
 DF 11011111 PWM2 PWM 2 Data Register 1.5.7.2
*

D0 11010000 (PSW)
Program Status Word

Register
1.5.14.2

 D1 11010001 FSKBUF FSK Data Buffer 1.5.13.2
* C0 11000000 P4 Port 4 1.5.3.1
 C1 11000001 P4DIR Port 4 Direction Register 1.5.3.2
 C2 11000010 P4OD Port 4 Open-Drain Register 1.5.3.3

C3 11000011 P4RES
Port 4 Resistor Pull-Up

Register
1.5.3.4

*
B8 10111000 (IP)

Interrupt Priority Control
Register

1.5.5.2

B9 10111001 IP_1

Interrupt Priority Control 1
Register

1.5.5.2

* B0 10110000 (P3) Port 3 1.5.3.1
 B1 10110001 P3DIR Port 3 Direction Register 1.5.3.2
 B2 10110010 P3OD Port 3 Open-Drain Register 1.5.3.3

B3 10110011 P3RES
Port 4 Resistor Pull-Up

Register
1.5.3.4

*
A8 10101000 (IE)

Interrupt Enable Control
Register

1.5.5.1

 A9 10101001 IE_1 Interrupt Enable 1 Register 1.5.5.1
 AA 10101010 ICON1A Interrupt Control register A 1.5.5.3
 AB 10101011 ICON1B Interrupt Control register B 1.5.5.3
* A0 10100000 (P2) Port 2 1.5.3.1
* 98 10011000 (SCON) Serial Control Register 1.5.15.4
 99 10011001 (SBUF) Serial Data Buffer Register 1.5.15.5
 9C 10011100 OSCCON Oscillator Control Register 1.5.6.1
 9D 10011101 SPDCON Speed Control Register 1.5.6.2

9E 10011110 SPXMASK
System Crystal Frequency

Select
1.5.6.3

 9F 10011111 PDXMASK Power Down Exit Register 1.5.6.4
* 90 10010000 (P1) Port 1 1.5.3.1
 91 10010001 P1DIR Port 1 Direction Register 1.5.3.2
 92 10010010 P1OD Port 1 Open-Drain Register 1.5.3.3

93 10010011 P1RES
Port 1 Resistor Pull-Up

Register
1.5.3.4

 94 10010100 P0DIR Port 0 Direction Register 1.5.3.1
*

88 10001000 (TCON)
Timer/Counter Control

Register
1.5.15.1

89 10001001 (TMOD)

Timer/Counter Mode Control
Register

1.5.15.2

Page 14 of 51

8A 10001010 (TL0)

Timer/Counter O Low Byte
Register

1.5.15.3

8B 10001011 (TL1)

Timer/Counter 1 Low Byte
Register

1.5.15.3

8C 10001100 (TH0)

Timer/Counter O High Byte
Register

1.5.15.3

8D 10001101 (TH1)

Timer/Counter 1 High Byte
Register

1.5.15.3

* 80 10000000 (P0) Port 0 1.5.3.1
 81 10000001 (SP) Stack Pointer 1.5.14.3
 82 10000010 (DPL) Data Pointer Low Byte 1.5.2.1
 83 10000011 (DPH) Data Pointer High Byte 1.5.2.1

84 10000100 DPL1
CMX850 Data Pointer Low

Byte
1.5.2.1

85 10000101 DPH1

CMX850 Data Pointer High
Byte

1.5.2.1

 86 10000110 DPS Data Pointer Select Register 1.5.2.2
 87 10000111 (PCON) Power Control Register 1.5.6.5

* Bit

Addressable

Table 4: SFR Descriptions and Bit Addressability

Bit addressing (the ability to write to or alter individual bits) is very useful when setting up
SFRs. An SFR whose address ends with an 8 or a 0 are bit addressable, as indicated above.

I/O Ports

The CMX850 has a total of 5 active I/O ports available for interfacing with external circuitry.
Nearly all the bits available through these ports have multiple functions. Ports 0, 1 & 3 are
standard ports and are used in all 8051 micro controllers. Port 2 is not fully implemented but
is retained for backward compatibility with the MOVX A,@Rn instruction and XDATA access.
The CMX850 provides two additional ports, ports 4 and 5, to increase flexibility. Nearly every
port has multiple registers for precise control and power consumption optimisation.
All port registers can be accessed via the SFR space with locations as follows:

Table 5: Port Register Locations

As with all registers within the first column of the SFR, the port registers are all bit
addressable. The register functions are as follows (for the symbol column, “n” refers to the
port number):

(lsb) '..... 000' '..... 001' '..... 010' '..... 011' '..... 100'
$F8
$F0
$E8
$E0
$D8 P5 P5DIR P5OD P5RES
$D0
$C8
$C0 P4 P4DIR P4OD P4RES
$B8
$B0 (P3) P3DIR P3OD P3RES
$A8
$A0 (P2)
$98
$90 (P1) P1DIR P1OD P1RES P0DIR
$88
$80 (P0)

Page 15 of 51

SFR Register Symbol Function Bit Assignment Comment

Port Data
Register

Pn Data registers
associated with the
port output register.
Read-Modify-Write
operation capable

 Bit Addressable

Port Direction
Register

PnDIR Each port bit can be
selected as an input
or output.

Input = 0

Output = 1

Port Open-Drain
register

PnOD Each port bit can be
configured with a
pull-up/pull-down
driver or open drain
driver

Pull up/pull down
driver = 0

Open drain driver
= 1

Open drain refers
to the
characteristic of
never sourcing
current. That for a
logic 1 the pin is
high impedance

Port Resistor
Pull-up Register

PnRES Each port bit can be
configured with or
without a pull-up
resistor

No resistor = 0

50kohm resistor
to DVDD = 1

Current drain will
increase if the
50kohm resistor is
enabled

Note: A pull up resistor and pull-up/pull-down driver should not be selected simultaneously as
this will increase the current consumption.

Table 6: Port Register Descriptions

A number of the CMX850 port pins have multiple uses to allow operations such as accessing
an external keyboard. A break down of the alternative pin allocations is as follows:

P0.2 P0.1 P0.0 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0

P5.7 P5.6 P5.5 P5.4 P5.3 P5.2 P5.1 P5.0P4.7 P4.6 P4.5 P4.4 P4.3 P4.2 P4.1 P4.0

Serial
Bus

IRQ

Timers

PWM

Keyboard Rows

Keyboard
Columns

Keyboard Columns

Data Bus

Data Bus

D5 D4 D3 KBR.
7

KBR.
6

KBR.
5

KBR.
4

KBR.
3

KBR.
2

KBR.
1

KBR.
0

KBC.
7

KBC.
6

KBC.
5

KBC.
4

KBC.
3

KBC.
2

KBC.
1

KBC.
0

KBC.
15

KBC.
14

KBC.
13

KBC.
12

KBC.
11

KBC.
10

KBC.
9

KBC.
8

D2 D1 D0

PWM
2

PWM
1

T1 T0

INT1 INT0

TXD RXD

CMX850
Ports

CMX850
Ports

Alternate pin functions

Alternate pin functions

MUXAD = 0

MUXAD = 0

MUXAD = 1

MUXAD = 1

KBCON Enabled

Default Default

PWM Enabled.
No PnDIR setup

required

Timer Enabled.
requires PnDIR

setup

Serial Enabled.
requires PnDIR

setup

IRQ Enabled.
requires PnDIR

setup

KBCON Enabled

KBCON Enabled

Note. MUXAD control overrides all other register setups.

Figure 6: CMX850 Pin Alternate Functions

Page 16 of 51

Some instructions that read a port read the latch and others read the pin. The instructions that
read the latch rather than the pin are the instructions that read a value change it and then
rewrite it to the latch. These are called “read-modify-write” instructions. The instructions listed
below are read-modify-write instructions. When the destination operand is a port, or a port bit,
these instructions read the latch rather than the pin:

ANL Logical AND, e.g. ANL PI, A
ORL Logical OR, e.g., ORL P2, A
XRL Logical EX-OR, e.g. XRL P3, A
JBC Jump if bit = 1 and clear bit, e.g., JBC P1.1, LABEL
CPL Complement bit, e.g., CPL P3.0
INC Increment, e.g., INC P2
DEC Decrement, e.g., DEC P2
DJNZ Decrernent and jump if not zero, e.g., DJNZ P3, LABEL
MOV PX. Y, C Move carry bit to bit Y of Port X
CLR PX.Y Clear bit Y of Port X
SETB PX.Y Set bit Y of Port X

Table 7: read-modify-write

It is not obvious that the last three instructions in this list are read-modify-write instructions,
but they are. They read the port byte, all 8 bits, modify the addressed bit, and then write the
new byte back to the latch. The reason that read-modify-write instructions are directed to the
latch rather than the pin is to avoid a possible misinterpretation of the voltage level at the pin.
For example, a port bit might be used to drive the base of a transistor. When a 1 is written to
the bit, the transistor is turned on. If the CPU then reads the same port bit at the pin rather
than the latch, it will read the base voltage of the transistor and interpret it as a zero. Reading
the latch rather than the pin will return the correct value of 1.

Power Map

The inherent flexibility of the CMX850 extends also to the power control settings. Many of the
functional blocks within the CMX850 can be enabled or disabled and as such makes it
possible to develop very flexible power saving schemes. Figure 7 shows what functional
blocks exist that can be used to reduce overall power consumption. The illustration can also
be used to calculated typical power consumption figures when used in conjunction with the
CMX850 data sheet (see section 1.7.1.3 for details on specific current consumption figures.

Page 17 of 51

11.0592 MHz
Xtal operating

Idle Mode

32.768 kHz
Xtal operating

Idle Mode

5.5 MHz RC
Oscillator only

Idle Mode

8051 Core operating
Modem operating

[Rx, Tx, C-BUS and signal paths
enabled]

Keyboard encoder
only

Excluding 32.768 kHz
Xtal

PWM only, 2 outputs
Excluding

11.0592 MHz Xtal

CAS Detector and
FSK Receiver only

Excluding
11.0592MHz Xtal

Watchdog Timer
[WDT] only
Excluding

32.768 kHz Xtal

Real Time Clock
[RTC] only
Excluding

32.768 kHz Xtal

ADC only
Excluding 11.0592

MHz Xtal

Or Or

CMX850 Power Map

uA uA uA

uA uA uA

uA uA uA

mA mA

Total =

Figure 7: CMX850 Pin Alternate Functions

Other power saving schemes and methods are also possible within the CMX850 such as
Burst Mode Memory Access, reduced operating voltage and selection of external analogue
components. Please refer to the appropriate sections within the CMX850 data sheet or this
application note for further details.

Timers and Counters

The CMX850 has a built in Real Time Clock (RTC) and Watchdog Timer (WDT). This section
aims to give the user some insight of RTC and WDT system control to operate the CMX850
device correctly.

Real Time Clock (RTC) and Alarm Registers

The Real Time Clock (RTC) circuit in the CMX850 consists of a 32bit counter clocked once
per second which is divided into four time registers (TIME0-3) and compared against four
alarm registers (ALM0-3) to generate an alarm interrupt as required. Tables 8, 9 and 10
summarize the available RTC timers and alarm registers.

The RTC Control Register (RTCCON) is used to control the TIME0-3 RTC registers. This
register enables and controls the RTC and the selection of the time interval set-up between
regular INT6 interrupts.

Page 18 of 51

Register
Name

Register
Address

Register bit (0 to 31)
Allocation

Comments / Notes

RTCCON $FB 0 to 7 Controls RTC TIME0-3

Table 8: RTC Control Register (RTCCON)

The TIME0-3 registers clock at 1 per second regardless of INT6 setup.
The RTC stores the time in four Special Function Register (SFR): TIME0, TIME1, TIME2 and
TIME3. Each register holds eight bits, with TIME0 holding the least significant eight bits and
TIME3 holding the most significant eight bits.

Register
Name

Register
Address

bit (0 to 31) Allocation

TIME0 $FC 0(lsb) to 7

TIME1 $FD 8 to 15

TIME2 $FE 16 to 23

TIME3 $FF 24 to 31(msb)

Table 9: RTC Time Registers

The RTC stores the 32 bit alarm time in four SFRs: ALM0, ALM1, ALM2 and ALM3. Each
register holds eight bits, with ALM0 holding the least significant eight bits and ALM3 holding
the most significant eight bits.

Register
Name

Register
Address

bit (0 to 31) Allocation

ALM0 $F4 0(lsb) to 7 of TIME0

ALM1 $F5 8 to 15 of TIME1

ALM2 $F6 16 to 23 of TIME2

ALM3 $F7 24 to 31(msb) of TIME3

Table 10: RTC Alarm Registers

Using the alarm facility is simply a case of setting the required alarm time in ALM0…3. The
RTC waits until the current 32-bit time value is equal to or greater than the 32-bit alarm time,
then on the next active edge of the 32.768kHz clock will assert the Int7 interrupt line to the
8051 µC.

Notes:

• As it is recommended that INT7 be configured as a level sensitive interrupt, it is the
responsibility of the interrupt service routine to clear the alarm interrupt request either by
clearing IE_1 bit 5 or by writing a new 32-bit alarm value to the ALM0…3 SFRs (writing to any
of the ALM0…3 registers negates the Int7 signal). If this is not done, the alarm interrupt will
re-trigger upon exit of the service routine.

• During the process of writing to the registers a spurious interrupt may be generated. It is
suggested that the interrupt registers are masked and cleared during the writing process to
stop any new interrupts.

• It is recommended that the alarm interrupt enable bit (IE_1 bit 5) be cleared whenever
the ALM0…3 registers are being modified.

• There is no status bit in RTCCON for the alarm interrupt signal, therefore should it be
necessary to poll the alarm interrupt it must be done from the flag bit in the interrupt control
register ICON1B.

Page 19 of 51

• To read the RTC TIME0, 1, 2 & 3, four reads must be performed. One for each of the
registers. As the read time takes a finite time 2 read operations are recommended, when the
2 values are equal then this is deemed as the correct time value.

RTC
Prescaler

Time3

($FF)

Time0

($FC)

Time1

($FD)

Time2

($FE)

ALM3

($F7)

ALM2

($F6)

ALM1

($F5)

ALM0

($F4)

Comparator (Timex >= ALMx)
Alarm Interrupt

INT7 ($5B)

RTC - Plus One Second Counter

RTC Timer Alarm Storage Registers

Time Interrupt
"Ticking / Repetitive"

INT6 ($53)

RTC Enable
RTCCON ($FB) b7
1 = Enable
0 = Disable & Powersave

RTC Disable Count
RTCCON ($FB) b3
 1=Disable / 0=Enable

Prescaler
Reset
RTCCON
($FB) b6
 1=Reset/
Hold

INT7 Interrupt Enable
1=Enable / 0=Clear
IE_1 ($A9) b5

Time Interrupt
1=Enable / 0=Clear
IE_1 ($A9) b4

b2
====

0
0
0
0
1
1
1
1

b1
====

0
0
1
1
0
0
1
1

b0
====

0
1
0
1
0
1
0
1

 Fractions of
 Seconds
===========
1/16 = 62.5ms
1/8 = 0.125s
1/4 = 0.25s
1/2 = 0.5s
1
2
4
8

RTC INT6 Time Interval Select
RTCCON ($FB) b0, 1, 2

Time Interrupt Clear
RTCCON ($FB) b5
1 = Clear (resets to 0)

32.768kHz

Figure 8: Block Diagram of the RTC Timer and the Alarm Timer

Please refer to the appendix for Real Time Clock sample “C” code.

Watch-Dog Timers (WDT)

The Watchdog Timer (WDT) can be used to monitor the operation of the CMX850 system.
This is achieved by creating a regular WDT refresh within the software; if this refresh does not
occur on time, the WDT will assume that the system has hung and will cause a system reset,
preceded by an optional interrupt request to the 8051 µC.

When the interrupt before watchdog is activated the operation of the watchdog is modified.
The watchdog will expire in the programmed interval as normal but instead of resetting the
device it will trigger an interrupt (INT8). This interrupt then has a period of (prescale/128)
seconds to determine if a watchdog reset is required. If a reset is not required then the
watchdog should be refreshed and either the watchdog counter reloaded or the watchdog
disabled. If the watchdog is not refreshed by the interrupt service routine then the device will
reset after another (prescale/128) seconds have passed.

Page 20 of 51

; Sample code to refresh and then disable the WDT

ORL WDTCON,#0x02 ; Refresh the WDT
MOV WDTCON,#0x00 ; Disable the WDT

; Sample code to refresh and then reload the WDT

ORL WDTCON,#0x02 ; Refresh the WDT
MOV WDTLD,#WDT_RELOAD ; Reload the WDT with reload value

WDT
Prescaler WDTLD

($F3)
WDTLD

($F3)
WDTLD

($F3)
=0000

WDTLD
($F3)
=0000

b15..12 b3..0b7..4b11..8

Overflow / Comparator

WDT Timeout Status. Overflow Occurred
WDTCON ($F2) b2

WDTLD Load Reg

WDT Interupt
INT8 ($63)

WDTCON Reset
($F2) b1
 1=Reset

INT8 Interrupt Enable
1=Enable / 0=Clear
IE_1 ($A9) b6

32.768kHz

Period = (256-(WDTLD b8..15)) x (Prescaler Divider/128)

WDTCON Start
($F2) b0
 1=Start / 0=Stop

WDT Delayed Reset Enable
WDTCON ($F2) b4

1 = Interupt on WDT timeout & Reset

0 = Reset on WDT timout

WDT Enable
WDTCON
($F2) b7
1=Enable
0=Disabled

F F F F

b6

0
0
1
1

b5

0
1
0
1

Divider

256
64
8
1

WDT Prescaler.
WDTCON ($F2) b5,6

Max Value

516 sec
128 sec
16 sec
2 sec

Figure 9: Block Diagram of the Watchdog Timer

Serial Port Interface

One of the 8051’s many powerful features is its integrated UART, also known as a serial port.
Port 3 has the alternative option of being set up as a serial data port. The fact that the 8051
has an integrated serial port means that you may very easily read and write values to the
serial port and interface with a standard PC.

Setting the Serial Port Mode

The first thing we must do when using the CMX850’s integrated serial port is configure it. This
lets us tell the 8051 how many data bits will be used, the desired baud rate and how the baud
rate will be determined.

The "Serial Control" and SCON SFR (listed in Table 12) is used to configure the serial port.
Port 3 bits 7-0 are available as I/O pins, but each pin also has an alternative output function,
as shown in Table 11.

Page 21 of 51

CMX850
Pin No.

PORT/BIT ADDRESS NAME ALTERNATIVE
FUNCTION

9 P3.0 $B0 RXD Serial port receive data

10 P3.1 $B1 TXD Serial port transmit data

11 P3.2 $B2 Int0 Int0 (External interrupt 0)

12 P3.3 $B3 Int1 External interrupt 1

13 P3.4 $B4 T0 Timer/counter 0 external input

14 P3.5 $B5 T1 Timer/counter 1 external input

15 P3.6 $B6 PWM1
Pulse-Width Modulator 1

output

16 P3.7 $B7 PWM2
Pulse-Width Modulator 2

output

Table 11: P3 Port Pin Usage

Note that pins 15 (P3.6) and pin 16 (P3.7) are automatically configured as an output when the
associated PWM block is enabled. The other alternative pin functions require the correct pin
direction to be explicitly configured using the Port 3 P3DIR register (SFR $B1).

NAME ADDRESS DESCRIPTION

SM0 $9F

SM1 $9E

Serial port mode select bit 0 & bit 1
These two bits determine the serial port-operating mode, as illustrated in
table 13. The serial port-operating mode selects the mode of operation
(8-bit/9-bit, UART or Shift Register) and also determines how the baud
rate will be calculated.
In modes 0 and 2 the baud rate is fixed based on the oscillator’s
frequency.
In modes 1 and 3 the baud rate is variable based on how often Timer 1
overflows.

SM2 $9D

Serial port mode select bit 2
This bit is a flag for "Multiprocessor communication". Generally,
whenever a byte has been received the 8051 will set the Receive
Interrupt (RI) flag, which lets the program know that a byte has been
received and that it needs to be read & processed. However, when SM2
is set, the "RI" flag will only be triggered if the 9th bit received was a "1".
That is to say, if SM2 is set and a byte is received whose 9th bit is clear,
the RI flag will never be set. This can be useful in certain advanced serial
applications.

REN $9C

Serial port receive enable. - (This bit must be set in order to receive
characters).
"Receiver Enable”. If you want to receive data via the serial port, set this
bit. You will almost always want to set this bit.

TB8 $9B

9th Transmit data bit. - (The 9th bit to transmit in mode 2 and 3).
This bit is used as the 9th “data bit” in modes 2 and 3. If TB8 is set and a
value is written to the serial port, the data bits will be written to the serial
line followed by a "set" ninth bit. If TB8 is clear the ninth bit will be "clear".
This is used to implement parity systems.

Page 22 of 51

RB8 $9A

8th Receive data bit. - (The 9th bit received in mode 2 and 3).
This bit is relevant for modes 2 and 3 and functions essentially the same
way as TB8, but on the reception side. When a byte is received in modes
2 or 3, a total of nine bits are received. In this case, the first eight bits
received are the data of the serial byte received and the value of the ninth
bit received will be placed in RB8. This is used to implement parity
systems.

TI $99

Transmit interrupt Flag - (Set when a byte has been completely
transmitted.)
"Transmit Interrupt". When a program writes a value to the serial port, a
certain amount of time will pass before the individual bits of the byte are
"clocked out" of the serial port. If the program were to write another byte
to the serial port before the first byte was completely output, the data
being sent would be garbled. Thus, the 8051 lets the program know that
it has "clocked out" the last bit by setting the TI bit. When the TI bit is set,
the program may assume that the serial port is "free" and ready to send
the next byte.

RI $98

Receive interrupt Flag. - (Set when a byte has been completely received)
"Receive Interrupt". It functions similarly to the "TI" bit, but it indicates
that a byte has been received. That is to say, whenever the 8051 has
received a complete byte it will trigger the RI bit to let the program know
that it needs to read the value before another byte is received.

Table 12: SCON Register

Bit 7

(SM0)
Bit 6

(SM1)
Serial Port mode

0 0 Mode 0 = Shift register, baud rate = (fosc / 12) **SM2=0

0 1 Mode 1 = 8-bit UART, baud rate = variable

1 0 Mode 2 = 9-bit UART, baud rate = (fosc / 64) or (fosc / 12)

1 1 Mode 3 = 9-bit UART, baud rate = variable

Bit 5
(SM2)

Enables the microprocessor communications features.
In modes 2 & 3, if SM2=1 then RI will not be activated if the 9th received data bit
(RB8) is 0
In mode 1, If SM2=1 then RI will not be activated if a valid stop bit was not
received.
**In Mode 0 then SM2=0.

Table 13: SCON Configuration for Serial Port Operating Modes

Setting the Serial Port Baud Rate

In mode 0, the baud rate is always the oscillator frequency divided by 12. This means if your
crystal is 11.059Mhz, mode 0 baud rate will always be 921,583 baud.

In mode 2 the baud rate is always the oscillator frequency divided by 64, so an 11.059Mhz
crystal speed will yield a baud rate of 172,797.

If the Serial Port mode has been configured as mode 1 or 3, then the program must configure
the serial port’s baud rate.

The baud rate is determined by how frequently timer 1 overflows. The more frequently timer
1 overflows, the higher the baud rate. There are many ways one can cause timer 1 to
overflow at a rate that determines a baud rate, but the most common method is to put timer 1
in 8-bit auto-reload mode (timer mode 2) and set a reload value (TH1) that causes Timer 1 to

Page 23 of 51

overflow at a frequency appropriate to generate a baud rate. The resulting baud rate is
variable and is calculated from:

where:

K = 1 if SMOD = 0
K = 2 if SMOD = 1

SMOD = bit 7 of the PCON reg ($87)
fosc = Crystal frequency
TH1 = Timer/Counter 1 high byte register ($8D)

This situation only applies to Serial Port modes 1 and 3 otherwise the Baud Rate is
determined based on the oscillator’s frequency.

To determine the value that must be placed in TH1 to generate a given baud rate, we may
use the following equation (assuming PCON bit 7 (SMOD) is clear).

TH1 = 256 - (Crystal / (384 x Baud Rate)) ……………………..(1)

If PCON.7 is set then the baud rate is effectively doubled, thus the equation becomes:

TH1 = 256 - (Crystal / (192 x Baud Rate)) ……………………..(2)

For example, if we have an 11.059Mhz crystal and we want to configure the serial port to
19,200 baud:

TH1 = 256 - (Crystal / (384 x Baud))
TH1 = 256 - (11059000 / (384 x 19200))
TH1 = 256 - 1.5 = 254.5

As you can see, to obtain 19,200 baud on a 11.059Mhz crystal we’d have to set TH1 to 254.5.
If we set it to 254 we will have achieved 14,400 baud and if we set it to 255 we will have
achieved 28,800 baud…Therefore...

To achieve a baud rate of 19,200: we need to set the Power Control PCON bit 7 (SMOD)
register. When we do this we double the baud rate and utilize the second equation
mentioned above.

Thus we have:

TH1 = 256 - (Crystal / (192 x Baud))
TH1 = 256 - (11059000 / (192 x 19200))
TH1 = 256 - 3 = 253

Here we are able to calculate a nice, even TH1 value. Therefore, to obtain 19,200 baud with
an 11.059MHz crystal we must:

1. Configure Serial Port mode 1 or 3.
2. Configure Timer 1 to timer mode 2 (8-bit auto-reload).
3. Set TH1 to 253 to reflect the correct frequency for 19,200 baud.
4. Set the Power Control PCON bit 7 (SMOD) register to double the baud rate.

()
()()12561232

_
TH

fK
RATEBAUD

osc

−××
×

=

Page 24 of 51

To achieve a baud rate of 9,600: we need to clear the Power Control PCON bit 7 (SMOD)
register and utilize the first equation mentioned above:

TH1 = 256 - (Crystal / (384 x Baud))
TH1 = 256 - (11059000 / (384 x 9600))
TH1 = 256 - 3 = 253

Here we are able to calculate a nice, even TH1 value. Therefore to obtain 9600 baud rate with
an 11.059MHz crystal we must:

1. Configure Serial Port mode 1 or 3.
2. Configure Timer 1 to timer mode 2 (8-bit auto-reload).
3. Set TH1 to 253 to reflect the correct frequency for 9,600 baud.
4. Clear the Power Control PCON bit 7 (SMOD) register.

TH1 = 256 – (fosc / (384 x Baud Rate))………..for K=1

 SMOD = 0 SMOD = 0

 K = 1 K = 1

 fosc = 11,059,200 fosc = 12,288,000*

Baud Rate TH1 (dec / hex) TH1 (dec / hex)

1200 232 / E8 203 / CB

2400 244 / F4 243 / F3

4800 250 / FA 249 / F9

9600 253 / FD 253 / FD

Table 14: Baud Rate Settings with PCON.7=0

For a baud rate of 19200 the PCON.7 (SMOD) must be set '1' and the equation changes to:

TH1 = 256 – (fosc / (192 x Baud Rate))………..for K=2

 SMOD = 1 SMOD = 1

 K = 2 K = 2

 fosc = 11,059,200 fosc = 12,288,000

Baud Rate TH1 (dec / hex) TH1 (dec / hex)

19200 250 / FA 249 / F9

* The TH1 values for the fosc = 12.288MHz are rounded to the nearest whole figure.

Table 15: Baud Rate Settings with PCON.7=1

Writing to the Serial Port

Once the Serial Port has been properly configured as explained above, the serial port is ready
to send data and receive data.

To write a byte to the serial port, write the value to the SBUF ($99) SFR. For example, if you
wanted to send the character "A" to the serial port, it could be accomplished with:

Page 25 of 51

MOV SBUF,#’A’

Upon execution of the above instruction the 8051 will begin transmitting the character via the
serial port. Since the 8051 does not have a serial output buffer we need to be sure that the
character is completely transmitted before we try to transmit the next character.

The 8051 lets us know when it is done transmitting a character by setting the TI bit in SCON.
When this bit is set the last character has been transmitted and the next character, if any, can
be sent. Consider the following code segment:

JNB TI,$;Wait for the TI bit to set thus ready for a new byte.
CLR TI ;Clear TI for the next character to be transmitted
MOV SBUF,#’A’ ;Send the character ‘A’ to the serial port SBUF Register.
JNB TI,$;Pause until byte is transmitted, the TI bit is set.

The above three instructions will wait for the serial port to transmit the last character, clear the
TI transmit ready flag and load the character “A” into the serial port to start transmission.

Reading the Serial Port

To read a byte from the serial port one just needs to read the value stored in the SBUF ($99)
SFR after the 8051 has automatically set the RI flag in the SCON SFR.

For example, if your program wants to wait for a character to be received and subsequently
read it into the Accumulator, the following code segment may be used:

JNB RI,$;Wait for the 8051 to set the RI flag, byte received.
MOV A,SBUF ;Read the character from the serial port.
CLR RI ;Indicate character read from serial port.

The first line of the above code segment waits for the 8051 to set the RI flag; again, the 8051
sets the RI flag automatically when it receives a character via the serial port. So as long as
the bit is not set the program repeats the "JNB" instruction continuously.

Once the RI bit is set upon character reception the above condition automatically fails and
program flow falls through to the "MOV" instruction that reads the value.

Lastly the RI flag is cleared to allow the next character reception to be recognised.

RS232 Connection to a PC

The connection to a PC is fairly straightforward but as the CMX850 is operated at 3.3Vdc the
output voltages are below the RS232c standard levels, therefore a level-shifting device will be
required to change the CMX850 output to a RS232 standard.

CMX850

Pin 16 - Port 3.7 - RxD

Pin 17 - Port 3.6 - TxD

RS232
Voltage Level

Changer

(for example)
MAX2327CAI

or
LT1130CN

2

TxD

RxD

3

5

3

2

5

Gnd

PC

RxD

TxD

COM
1/2

+Vdc +Vdc

Figure 10: Serial Port Wiring Connection - For a more comprehensive example of
RS232 interface circuit diagram, please refer to the CML Microcircuits’ EV8500 circuit

Page 26 of 51

RS232 interface circuit diagram, please refer to the CML Microcircuits’ EV8500 circuit
schematics.

CAS/FSK Detector Block

Phone Interface

CAS/FSK
Detection Block

V.22bis Modem

8051
Core

Line Interface

Figure 11: Block Diagram of the CAS/FSK signal interface.

The CPE (Customer Premise Equipment) Alerting Signal, or CAS Tone, is typically a 80ms
burst of simultaneous 2130Hz and 2750Hz tones, although it cab be optimised a maximum of
a 135ms CAS tone. The CAS tone is typically encountered in Caller ID on Call Waiting
applications that allow the reception of Caller ID information while the telephone is in use (off-
hook). An integrated CAS/FSK detector is provided in the CMX850. Simultaneous CAS
detection capability and FSK decoding allow the CMX850 to serve in both on-hook and off-
hook Caller ID applications in Europe, Scandinavia and the Americas and beyond.

The CAS/FSK detector block is configured through the CASDET SFR and can be placed into
two modes of operation, CAS detection and FSK detection and formatting.

CAS Tone detection

To select the CAS detector Bit 6 of the CASDET SFR should be disabled, set low. This is the
default CMX850 bit setting upon power-up or reset.

The CAS tone detector is further configured through the CASDET SFR:

o Bit 7 of CASDET is used to enable the CAS detector.
o This bit also activates the Vbias generator and the “line” input amplifier.

o Bits 5-3 of CASDET determine the tone duration required before CAS qualification is
made.

The CASDET SFR responds to the presence of a CAS tone as follows:

o CASDET b0 (“DETECT” bit) will be set as long as a CAS tone is detected.
o If the CAS tone is present for the time duration specified by CASDET b5-3:

Page 27 of 51

o Once CAS tone goes away, CASDET b1 (“INTERRUPT STATUS”) will be set
to indicate that a valid CAS tone has been detected.

o INT2 (external interrupt 2) will become active, which notifies the 8051 of the
CAS detection.

o INT2 can be enabled or disabled with IE_1.0.

To clear the INTERRUPT STATUS bit and INT2, the INTERRUPT CLEAR bit (CASDET b2),
should be toggled high.

FSK detection

To enable the FSK detector Bit 6 of the CASDET SFR should be enabled, set high.

The FSK detector block is further configured through the CASDET SFR:

o Bit 7 of CASDET is used to enable the CAS /FSK detector.
o This bit also activates the Vbias generator and the “line” input amplifier.

o Bit 3 of CASDET selects the data receive mode. Setting this bit to “1” selects bit
mode and a “0” settings selects byte mode.

Bit mode

The CASDET SFR responds to the presence of a FSK data bit as follows:

o There is no interrupt mechanism for bit mode operation so a polling mechanism
should be employed in the 8051 code that reads FSKBUF SFR, b7 at regular
consecutive intervals at no more than 800us approx apart.

Note: Voice and other in-band noise may also trigger the FSK detector so depending on the
application it may be necessary to mute the local voice.

Byte mode

The CASDET SFR responds to the presence of a FSK data byte as follows:

o When a valid FSK character has been detected an interrupt will be generated, and
the Interrupt Status bit b1 of the CASDET Register should be read. Int2 will also be
set if it is enabled.

o As soon as the interrupt has been read and the 8 data bits read from the FSKBUF
SFR all the interrupts will be cleared, the process will be repeated as long as valid
data is being received.

Note: This mechanism is designed for asynchronous data that has 1 start bit, 8 data bits and
a stop bit. Noise or synchronous data reception can cause indeterminate data to be stored in
the FSKBUF SFR. 55h preamble pattern will be correctly loaded as 55h

Note: Since the CAS/FSK detector block operates independently of the modem block, the
8051 µC must “wake up” the modem portion of the CMX850 upon indication of CAS tone
detection for the subsequent data transfer.

Interrupts

Interrupt Sources and Vector Addresses

The CMX850 has thirteen vectored interrupt sources, including the original five interrupt
sources from the original 8051 Microcontroller and eight additional interrupt sources. The
thirteen-interrupt sources available in the CMX850 are listed below (interrupt sources used in
standard 8051 Microcontrollers are in parentheses):

Page 28 of 51

Interrupt
signal

Hardware source Vector
address

Bit to
enable

interrupt

Bit to
assign
priority

Priority
within
level

(lower #
has

higher
priority)

 (Int0) Interrupt 0 input pin (P3.2) $03 IE.0 IP.0 2

 (Timer0) 8051 timer 0 $0B IE.1 IP.1 4

 (Int1) Interrupt 1 input pin (P3.3) $13 IE.2 IP.2 6

 (Timer1) 8051 timer 1 $1B IE.3 IP.3 8

 (Serial) RI or TI from 8051 serial
port

$23 IE.4 IP.4 10

 Int2 CAS Detect $33 IE_1.0 IP_1.0 1 (Highest)

 Int3 DSP Modem $3B IE_1.1 IP_1.1 3

 Int4 Keyboard encoder $43 IE_1.2 IP_1.2 5

 Int5 A/D converter $4B IE_1.3 IP_1.3 7

 Int6 Real-time clock (RTC)
time interrupt

$53 IE_1.4 IP_1.4 9

 Int7 RTC alarm interrupt $5B IE_1.5 IP_1.5 11

 Int8 Watchdog timeout $63 IE_1.6 IP_1.6 12
(Lowest)

 Int9 Interrupt 9 input pin (D6)* $6B IE_1.7 N/A
(SUPER

PRIORITY
)

N/A
(SUPER

PRIORITY
)

Table 16: CMX850 Interrupts

Note*, only available in multiplexed address mode

Page 29 of 51

Enabling and Disabling Interrupts

The interrupts flag must first be enabled before any interrupt other than INT9 can be
activated; this is done by setting bit 7 in the IE (Interrupt Enable) SFR. Once bit 7 in the IE
SFR is set, individual interrupts can be enabled or disabled by manipulating the appropriate
bits in either the IE or the IE_1 (Interrupt Enable_1) SFR. The five “standard” 8051 interrupts
(Serial, Timer 0, Timer 1, external interrupt 1, external interrupt 2) are enabled/disabled with
the IE SFR, and the CMX850 specific interrupts are controlled through the IE_1 SFR.

Int9 is a “super priority” interrupt source that is intended for use in debugging with an external
PROM emulator. Int9 is the only interrupt not affected by bit 7 of the IE SFR; instead, it is
enabled/disabled by bit 7 of the IE_1 SFR.

When an interrupt is enabled and an “interruptible event” occurs at the interrupt source (e.g.
timer expires, serial data byte has finished transmission, etc.), an interrupt request is
generated and the CMX850 uC will cause program execution to vector to the predefined
memory address listed above (“Vector Address” column in table). An interrupt service routine
(ISR) should be located at the vectored address, the ISR is executed and program control is
then returned to the main program at the point where program flow was interrupted when the
ISR completes.

Interrupt Priorities

The CMX850 priority handling scheme is two-tiered and is identical to that used in the original
8051: high/low priority (top tier) and priority-within-level (lower tier).

Each interrupt can be assigned as either a high or low priority by manipulating bits in the IP
and IP_1 (Interrupt Priority & Interrupt Priority_1) SFR. Priorities (e.g. high or low) for the five
“standard” 8051 interrupts (Serial, Timer 0, Timer 1, external interrupt 1, external interrupt 2)
are set via the IP SFR, while the priorities for the CMX850 specific interrupts are set via the
IP_1 SFR.

The “priority within level” rankings determine which interrupt takes precedence if interrupt
requests of the same priority occur simultaneously. For example, if INT3 and TIMER0 occur
simultaneously and are both high priority, INT3 will be serviced first because it has a higher
priority-within-level than does TIMER0.

All interrupts, with the exception of Int9, are controlled by the CMX850 interrupt logic circuitry
described above. Int9 is permanently configured with “super priority” and will interrupt any
other interrupt regardless of priority.

Interrupt Handling

The CMX850 CPU samples the condition of its thirteen-interrupt sources at the completion of
every machine cycle. This information is analysed during the next machine cycle (i.e. M1). If
an interrupt has occurred a call to the associated vector address will take place over the next
two machine cycles (i.e. M2-M3). The start of the associated ISR will be situated at this
vector address.

The ISR will begin execution with the fourth machine cycle after the initial interrupt conditions
were recorded (i.e. M4). ISR execution will continue until the ISR is complete or until a higher
priority interrupt occurs. When the ISR is complete the program will return to the instruction
immediately following the one that was being processed prior to the interrupt.

There are three conditions under which an interrupt flag will not cause an immediate call to its
ISR (e.g. interrupt vector address):

1) An interrupt of equal or higher priority is already in progress. In this condition, the
newly activated interrupt is considered “pending” and its own ISR will be called after
the current interrupt has been fully serviced.

Page 30 of 51

2) The current machine cycle is not the final machine cycle of the instruction being
executed. When an interrupt flag occurs in this situation, the current instruction must
be fully completed before the ISR can be called.

3) The current instruction is either (a) “return from interrupt” (RETI) or (b) an instruction
that modifies the IE, IE_1, IP, or IP_1 register. When this happens, at least one
additional instruction (beyond the current instruction) must be completed before the
ISR can be called.

Interrupt Activation Levels

Most interruptible events can be signalled in one of two ways; a change of logic state for the
interrupt source (“edge triggered”), or a low logic level condition for the interrupt source (“level
triggered”). These types of interrupts require the manipulation of “type control” bits to
determine whether edge triggering or level triggering is to be used.

Edge triggered interrupt flags are automatically cleared when the corresponding interrupt
service routine is called. A level triggered interrupt flag is cleared when the event that caused
the interrupt is cleared.

Some interruptible events, such as timer interrupts, are by definition purely edge triggered
(interrupts occur when counter register rolls over from all 1s to 0s) and therefore do not
require type control bits.

It is recommended that the type control bits for INT2-8 be cleared to 0 to configure them as
level triggered interrupts.

Interrupt Hardware Source “Type Control” bit location Interrupt Flag location

TIMER0 Internal timer 0 N/A TCON.5
TIMER1 Internal timer 1 N/A TCON.7
SERIAL Serial port (RI or TI) N/A SCON.0 (RI) and SCON.1

(TI)
INT0 External interrupt 0 TCON.0 TCON.1
INT1 External interrupt 1 TCON.2 TCON.3
INT2 External interrupt 2 ICON1A.0 ICON1A.1
INT3 External interrupt 3 ICON1A.2 ICON1A.3
INT4 External interrupt 4 ICON1A.4 ICON1A.5
INT5 External interrupt 5 ICON1A.6 ICON1A.7
INT6 External interrupt 6 ICON1B.0 ICON1B.1
INT7 External interrupt 7 ICON1B.2 ICON1B.3
INT8 External interrupt 8 ICON1B.4 ICON1B.5
INT9 Super Priority ICON1B.6 ICON1B.7

Table 17: CMX850 Interrupt Configuration Locations

Page 31 of 51

Instructions and Addressing

CMX850 Instruction Set

The instructions used to control the CMX850 are listed below.

Instruction Description # OF

BYTES
OF
OSC

CYCLE
S

ACALL addr11 ABSOLUTE (SUBROUTINE) CALL command.
This command (1) increments the program
counter (PC) twice, (2) pushes the 16-bit PC
result onto the stack, (3) increments the stack
pointer (SP) twice. The destination address is
then determined by concatenating the upper five
bits of the PC with bits 7-5 of the ACALL
opcode, and the second instruction byte.
Destination must be in the same 2Kbyte block
as the jump. The 2Kbyte blocks are fixed in
position.

2 24

ADD A, @Ri ADD operation. This command adds the
contents of the RAM location whose address is
in bank register “i” to the contents of the
accumulator, then leaves the result in the
accumulator.

1 12

ADD A, direct ADD operation. This command adds the
contents of RAM address “direct” to the
contents of the accumulator, then leaves result
in accumulator. (“Direct” is an 8-bit address for
either internal RAM or SFR.).

2 12

ADD A, Rn ADD operation. This command adds the byte
contained in bank register “n” to the contents of
the accumulator, then leaves result in
accumulator.

1 12

ADD A, #data ADD operation. This command adds the
immediate data byte to the contents of the
accumulator, then leaves the result in the
accumulator.

2 12

ADDC A, #data ADD WITH CARRY operation. This command
adds the carry flag and the immediate data byte
to the contents of the accumulator, then leaves
result in accumulator. This instruction is helpful
for addition of 16-bit or larger numbers.

2 12

ADDC A, @Ri ADD WITH CARRY operation. This command
adds the carry flag and the contents of the RAM
location whose address is in bank register “i” to
the contents of the accumulator, then leaves
result in accumulator. This instruction is helpful
for addition of 16-bit or larger numbers.

1 12

Page 32 of 51

ADDC A, direct ADD WITH CARRY operation. This command
adds the carry flag and contents of RAM
address “direct” to the contents of the
accumulator, then leaves result in accumulator.
This instruction is helpful for addition of 16-bit or
larger numbers. (“Direct” is an 8-bit address for
either internal RAM or SFR.).

2 12

ADDC A, Rn ADD WITH CARRY operation. This command
adds the carry flag and the byte contained in
bank register “n” to the contents of the
accumulator, then leaves result in accumulator.
This instruction is helpful for addition of 16-bit or
larger numbers.

1 12

AJMP addr11 ABSOLUTE JUMP command. This command
increments the PC by 2 and then transfers
program execution to the indicated address.
The destination address is then determined by
concatenating the upper five bits of the PC with
bits 7-5 of the ACALL opcode, and the second
instruction byte. Destination must be in the
same 2Kbyte block as the jump. The 2Kbyte
blocks are fixed in position.

2 24

ANL A, #data LOGICAL AND byte operation. This command
performs a bitwise-AND operation between the
accumulator value and the immediate data byte,
with the result stored in the accumulator. When
this instruction is used to modify an output port,
the output port latches supply the original port
data (for the instruction), not the port pins.

2 12

ANL A, @Ri LOGICAL AND byte operation. This command
performs a bitwise-AND operation between the
accumulator value and the contents of the RAM
location whose address is in bank register “i”,
with the result stored in the accumulator. When
this instruction is used to modify an output port,
the output port latches supply the original port
data (for the instruction), not the port pins.

1 12

ANL A, direct LOGICAL AND byte operation. This command
performs a bitwise-AND operation between the
accumulator value and the contents of RAM
address “direct”, with the result stored in the
accumulator. (“Direct” is an 8-bit address for
either internal RAM or SFR.) When this
instruction is used to modify an output port, the
output port latches supply the original port data
(for the instruction), not the port pins.

2 12

ANL A,Rn LOGICAL AND byte operation. This command
performs a bitwise-AND operation between the
accumulator value and the value in bank
register “n”, with the result stored in the
accumulator. When this instruction is used to
modify an output port, the output port latches
supply the original port data (for the instruction),
not the port pins.

1 12

Page 33 of 51

ANL C, /bit LOGICAL AND bit command. This command
performs an AND operation on the carry bit of
the PSW and the inverse of the indicated bit,
with the result stored in the carry bit. The
indicated bit (source bit) is not altered.

2 24

ANL C, bit LOGICAL AND bit command. This command
performs an AND operation on the carry bit of
the PSW and the indicated bit, with the result
stored in the carry bit. The indicated bit (source
bit) is not altered.

2 24

ANL direct, #data LOGICAL AND byte operation. This command
performs a bitwise-AND operation between the
the contents of RAM address “direct” and the
immediate data byte, with the result stored in
RAM address “direct”. (“Direct” is an 8-bit
address for either internal RAM or SFR.) When
this instruction is used to modify an output port,
the output port latches supply the original port
data (for the instruction), not the port pins. This
instruction can be used to mask combinations of
bits in the “direct” RAM register or SFR.

3 24

ANL direct, A LOGICAL AND byte operation. This command
performs a bitwise-AND operation between the
the contents of RAM address “direct” and the
accumulator value, with the result stored in
RAM address “direct”. (“Direct” is an 8-bit
address for either internal RAM or SFR.) When
this instruction is used to modify an output port,
the output port latches supply the original port
data (for the instruction), not the port pins. This
instruction can be used to mask combinations of
bits in the “direct” RAM register or SFR.

2 12

CJNE @Ri, #data, rel COMPARE AND JUMP IF NOT EQUAL
command. This command compares the
magnitudes of the contents of the RAM location
whose address is stored in bank register “i” and
the immediate data byte. If the magnitudes are
not equal, the PC is incremented by 3 (to form
the address of the next instruction) and program
execution transfers to the address whose sum is
PC + “rel”. Otherwise, program execution
continues with the next instruction. If the
unsigned integer value of the contents of RAM
location whose address is stored in bank
register “i” are less than the unsigned integer
value of the immediate data byte, the carry flag
(PSW) is set. Otherwise, the carry flag will be
cleared. The contents of the RAM location
whose address is stored in bank register “i”
contents are not altered.

3 24

Page 34 of 51

CJNE A, #data, rel COMPARE AND JUMP IF NOT EQUAL
command. This command compares the
magnitudes of the accumulator contents and the
immediate data byte. If the magnitudes are not
equal, the PC is incremented by 3 (to form the
address of the next instruction) and program
execution transfers to the address whose sum is
PC + “rel”. Otherwise, program execution
continues with the next instruction. If the
unsigned integer value of the accumulator is
less than the unsigned integer value of the
immediate data byte, the carry flag (PSW) is
set. Otherwise, the carry flag will be cleared.
The accumulator contents are not altered.

3 24

CJNE A, direct, rel COMPARE AND JUMP IF NOT EQUAL
command. This command compares the
magnitudes of the accumulator contents and the
“direct” RAM address. (“Direct” is an 8-bit
address for either internal RAM or SFR.) If the
magnitudes are not equal, the PC is
incremented by 3 (to form the address of the
next instruction) and program execution
transfers to the address whose sum is PC +
“rel”. Otherwise, program execution continues
with the next instruction. If the unsigned integer
value of the accumulator is less than the
unsigned integer value of the “direct” RAM
address, the carry flag (PSW) is set. Otherwise,
the carry flag will be cleared. The accumulator
contents and “direct” value are not altered.

3 24

CJNE Rn, #data, rel COMPARE AND JUMP IF NOT EQUAL
command. This command compares the
magnitudes of the bank register “n” contents
and the immediate data byte. If the magnitudes
are not equal, the PC is incremented by 3 (to
form the address of the next instruction) and
program execution transfers to the address
whose sum is PC + “rel”. Otherwise, program
execution continues with the next instruction. If
the unsigned integer value of the bank register
“n” contents are less than the unsigned integer
value of the immediate data byte, the carry flag
(PSW) is set. Otherwise, the carry flag will be
cleared. The bank register “n” contents and the
immediate data byte are not altered.

3 24

CLR A CLEAR operation. This command sets all bits
in the accumulator to zero.

1 12

CLR bit CLEAR command. This command clears the
indicated bit. No other bits are affected.

2 12

CLR C CLEAR command. This command clears the
carry bit of the PSW. No other bits are affected.

1 12

Page 35 of 51

CPL A COMPLEMENT operation. This command

logically complements all bits in the
accumulator. Bits, which were zeros before
command execution, become ones after
command execution, and vice versa.

1 12

CPL bit COMPLEMENT command. This command
complements the indicated bit (changes a one
to a zero, and vice versa). No other bits are
altered.

2 12

CPL C COMPLEMENT command. This command
complements the carry bit (changes a one to a
zero, and vice versa). No other bits are altered.

1 12

DA A DECIMAL ADJUST ACCUMULATOR FOR
ADDITION operation. This command applies a
correction factor that transforms the
accumulator value into two correct 4-bit BCD
(binary coded decimal) nibbles. DA command
will cause six to be added to either the high-
order or low-order accumulator nibble if either
nibble is greater than nine. (BCD numbers
cannot be greater than nine.) Additionally, the
DA command will cause six to be added to the
high-order accumulator nibble if the CY flag
(PSW.7 bit) is set, or to the low-order
accumulator nibble if the AC flag (PSW.6 bit) is
set.

1 12

DEC @Ri DECREMENT operation. This command
decrements the contents of the RAM location
whose address is in bank register “i” by one.

1 12

DEC A DECREMENT operation. This command
decrements the contents of the accumulator by
one.

1 12

DEC direct DECREMENT operation. This command
decrements the contents of RAM address
“direct” by one. (“Direct” is an 8-bit address for
either internal RAM or SFR.)

2 12

DEC Rn DECREMENT operation. This command
decrements the data byte stored in bank
register “n” by one.

1 12

DIV AB DIVIDE operation. This command divides the
contents of the accumulator by the contents of
the B register. The integer portion (quotient) of
the result is stored in the accumulator while the
remainder is stored in the B register.

1 48

Page 36 of 51

DJNZ direct, rel DECREMENT AND JUMP IF NOT ZERO
command. This command decrements the
contents of RAM address “direct” by one. An
original register value of 00h will underflow to
FFh. (“Direct” is an 8-bit address for either
internal RAM or SFR.) If these decremented
contents are not zero, the PC is incremented by
2 and program execution transfers to the
address of (PC + “rel”.) If the decremented
contents are zero, program execution continues
with the next instruction. When the DJNZ
command is used to modify an output port, the
output port latches supply the original port data
(for the instruction), not the port pins.

3 24

DJNZ Rn, rel DECREMENT AND JUMP IF NOT ZERO
command. This command decrements the
contents of bank register “n” by one. An original
register value of 00h will underflow to FFh. If
these decremented contents are not zero, the
PC is incremented by 2 and program execution
transfers to the address of (PC + “rel”.) If the
decremented contents are zero, program
execution continues with the next instruction.

2 24

INC @Ri INCREMENT operation. This command
increments the contents of the RAM location
whose address is in bank register “i” by one.

1 12

INC A INCREMENT operation. This command
increments the accumulator contents by one.

1 12

INC direct INCREMENT operation. This command
increments the contents of RAM address
“direct” by one. (“Direct” is an 8-bit address for
either internal RAM or SFR.).

2 12

INC DPTR INCREMENT operation. This command
increments the contents of the currently
selected data pointer by one. (NOTE: The DPS
SFR determines which data pointer is currently
selected.)

1 24

INC Rn INCREMENT operation. This command
increments the data byte stored in bank register
“n” by one.

1 12

JB bit, rel JUMP IF BIT SET command. This command
will cause the program to branch if the indicated
bit is set; otherwise, the program will continue
with the next instruction. The program counter
(PC) is incremented to the first byte of the next
instruction, and then added to the signed
relative-displacement byte in the third instruction
byte, to arrive at the branching location address.
The indicated bit is not altered.

3 24

Page 37 of 51

JBC bit, rel JUMP IF BIT SET AND CLEAR command. If
the indicated bit is set, this command will cause
the indicated bit to be cleared and the program
to branch; otherwise, the program will continue
with the next instruction. The program counter
(PC) is incremented to the first byte of the next
instruction, and then added to the signed
relative-displacement byte in the third instruction
byte, to arrive at the branching location address.

3 24

JC rel JUMP IF CARRY SET command. This
command will cause the program to branch if
the carry bit is set; otherwise, the program will
continue with the next instruction. The program
counter (PC) is incremented twice and then
added to the signed relative-displacement byte
in the second instruction byte to arrive at the
branching location address.

2 24

JMP @A + DPTR JUMP INDIRECT command. This command
adds the accumulator contents to the DPTR
value, and the sum is then passed to the PC.
The next instruction fetches will be use the
address held in the PC. The accumulator and
DPTR contents are not altered.

1 24

JNB bit, rel JUMP IF BIT NOT SET command. This
command will cause the program to branch if
the indicated bit is not set; otherwise, the
program will continue with the next instruction.
The program counter (PC) is incremented to the
first byte of the next instruction, and then added
to the signed relative-displacement byte in the
third instruction byte, to arrive at the branching
location address. The indicated bit is not
altered.

3 24

JNC rel JUMP IF CARRY NOT SET command. This
command will cause the program to branch if
the carry bit is not set; otherwise, the program
will continue with the next instruction. The
program counter (PC) is incremented twice and
then added to the signed relative-displacement
byte in the second instruction byte to arrive at
the branching location address.

2 24

JNZ rel JUMP IF ACCUMULATOR NOT ZERO
command. If any accumulator bit is a one, the
PC is incremented twice and program execution
branches to the sum of the PC and the “rel”
address. If all accumulator bits are zero,
program execution continues with the next
instruction. The accumulator contents are not
modified.

2 24

JZ rel JUMP IF ACCUMULATOR ZERO command. If
all accumulator bits are zero, the PC is
incremented twice and program execution
branches to the sum of the PC and the “rel”
address. If any accumulator bit is one, program
execution continues with the next instruction.
The accumulator contents are not modified.

2 24

Page 38 of 51

LCALL addr16 LONG (SUBROUTINE) CALL command. This
command first adds 3 to the PC to provide the
address for the next instruction. The command
then increments the SP by one and pushes the
low-order byte of the modified PC address onto
the SP. The SP is then incremented by one
again, and the high-order byte of the modified
PC address is pushed onto the SP. The
designated “addr16”, which corresponds to the
desired subroutine, is then loaded into the PC
and program execution begins at that location.
The called subroutine can begin anywhere in
the 64kbyte program memory space.

3 24

LJMP addr16 LONG JUMP command. This command
unconditionally branches to the indicated
address, which can be anywhere within the 64k
program memory space. The “addr16” high and
low order bytes are loaded into the PC.

3 24

MOV @Ri, #data MOVE byte command. This command copies
the contents of the immediate data byte into the
RAM location whose address is in bank register
“i”. The immediate data byte is not altered.

2 12

MOV @Ri, A MOVE byte command. This command copies
the contents of the accumulator into the RAM
location whose address is in bank register “i”.
The accumulator contents are not altered.

1 12

MOV @Ri, direct MOVE byte command. This command copies
the contents of the RAM address “direct” into
the RAM location whose address is in bank
register “i”. (“Direct” is an 8-bit address for
either internal RAM or SFR.) The contents of
RAM address “direct” are not altered.

2 24

MOV A, #data MOVE byte command. This command copies
the immediate data byte into the accumulator.

2 12

MOV A, @Ri MOVE byte command. This command copies
the contents of the RAM location whose
address is in bank register “i” into the
accumulator. Contents of the RAM location
whose address is in bank register “i” are not
altered.

1 12

MOV A, direct MOVE byte command. This command copies
the contents of RAM address “direct” into the
accumulator. (“Direct” is an 8-bit address for
either internal RAM or SFR.) Contents of RAM
address “direct” are not altered.

2 12

MOV A, Rn MOVE byte command. This command copies
the contents of bank register “n” into the
accumulator. Bank register “n” contents are not
altered.

1 12

MOV bit, C MOVE bit command. This command copies the
contents of the carry bit of the PSW into the
indicated bit.

2 24

Page 39 of 51

MOV C, bit MOVE bit command. This command copies the
contents of the indicated bit into the carry bit of
the PSW.

2 12

MOV direct, #data MOVE byte command. This command copies
the immediate data byte into the RAM address
“direct”. (“Direct” is an 8-bit address for either
internal RAM or SFR.)

3 24

MOV direct, @Ri MOVE byte command. This command copies
the contents of the RAM location whose
address is in bank register “i” into the RAM
address “direct”. (“Direct” is an 8-bit address for
either internal RAM or SFR.) The contents of
the RAM location whose address is in bank
register “i” is not altered.

2 24

MOV direct, A MOVE byte command. This command copies
the contents of the accumulator into the RAM
address “direct”. (“Direct” is an 8-bit address for
either internal RAM or SFR.) Accumulator
contents are not altered.

2 12

MOV direct, direct1 MOVE byte command. This command copies
the contents of the latter RAM address “direct1”
into the former RAM address “direct”. (“Direct”
is an 8-bit address for either internal RAM or
SFR.) Contents of the latter RAM address
“direct1” are not altered.

3 24

MOV direct, Rn MOVE byte command. This command copies
the contents of bank register “n” into the RAM
address “direct”. (“Direct” is an 8-bit address for
either internal RAM or SFR.) Contents of bank
register “n” are not altered.

2 24

MOV DPTR, #data16 MOVE byte command. This command copies
the contents of the 16-bit constant into the
currently selected data pointer register. (NOTE:
The DPS SFR determines which data pointer is
currently selected.).

3 24

MOV Rn, #data MOVE byte command. This command copies
the immediate data byte into the bank register
“n”.

2 12

MOV Rn, A MOVE byte command. This command copies
the accumulator contents into bank register “n”.
The accumulator contents are not altered.

1 12

MOV Rn, direct MOVE byte command. This command copies
the contents of the RAM address “direct” into
the bank register “n”. (“Direct” is an 8-bit
address for either internal RAM or SFR.) The
contents of the RAM address “direct” are not
altered.

2 24

Page 40 of 51

MOVC A, @A + DPTR MOVE CODE byte command. This command

will load the accumulator with a byte retrieved
from external program memory. The memory
location from which the code byte is retrieved is
the sum of the accumulator contents and the
16-bit DPTR register contents. (NOTE: The
DPS SFR determines which data pointer is
currently selected.) The DPTR contents are not
altered.

1 24

MOVC A, @A + PC MOVE CODE byte command. This command
will load the accumulator with a byte retrieved
from program memory. The memory location
from which the code byte is retrieved is the sum
of the accumulator contents and the 16-bit
program counter (PC) contents. The PC
contents are incremented prior to addition to the
accumulator contents.

1 24

MOVX @DPTR, A MOVE EXTERNAL byte command. This
command will copy the accumulator contents
into the RAM location whose address is
contained in the currently selected data pointer
register (i.e. write operation). (NOTE: In
addition to external memory locations, MOVX
commands can also access on-chip XRAM.)
(NOTE: The DPS SFR determines which data
pointer is currently selected.) Bits 4-3 of the
MEMCON SFR determine the memory location
to which the data is written (on-chip XRAM is
one possible destination). Bit 5 of the
MEMCON SFR determines if this MOVX
command is time stretched by one machine
cycle (12 oscillator cycles).

1 24

MOVX @Ri, A MOVE EXTERNAL byte command. This
command will copy the accumulator contents
into the XRAM location formed by taking P2 as
the address MSB and the contents of bank
register "i" as the address LSB. ("Ri" can be
either R0 or R1 of the working register bank.)
(NOTE: In addition to external memory
locations, MOVX commands can also access
on-chip XRAM.) Bits 4-3 of the MEMCON SFR
determine the memory location to which the
data is written (on-chip XRAM is one possible
destination). Bit 5 of the MEMCON SFR
determines if this MOVX command is time
stretched by one machine cycle (12 oscillator
cycles).

1 24

Page 41 of 51

MOVX A, @DPTR MOVE EXTERNAL byte command. This

command will copy the contents of the XRAM
location at the address held in DPTR into the
accumulator (i.e. read operation). (NOTE: The
DPS SFR determines which data pointer is
currently selected.) (NOTE: In addition to
external memory locations, MOVX commands
can also access on-chip XRAM.) Bits 1-0 of the
MEMCON SFR determine the memory location
from which the data is read. Bit 2 of the
MEMCON SFR determines if this MOVX
command is time stretched by one machine
cycle (12 oscillator cycles). (NOTE: Even
though the 16-bit address contained with the
DPTR is normally associated with external
program memory fetches, the DPTR contents
can also refer to on-chip XRAM as well; 13 bits
are required to fully access all 8k of the
CMX850's on-board XRAM space).

1 24

MOVX A, @Ri MOVE EXTERNAL byte command. This
command will copy the contents of the XRAM
location at the address formed by taking P2 as
the address MSB and Ri as the address LSB
into the accumulator (i.e. read operation). (“Ri”
can be either R0 or R1 of the working bank
register.) Bits 1-0 of the MEMCON SFR
determine the memory location from which the
data is read. (NOTE: In addition to external
memory locations, MOVX commands can also
access on-chip XRAM.) Bit 2 of the MEMCON
SFR determines if this MOVX command is time
stretched by one machine cycle (12 oscillator
cycles).

1 24

MUL AB MULTIPLY operation. This command multiplies
the contents of the accumulator by the contents
of the B register to give a 16-bit result. The
lower 8 bits of the result will be stored in the
accumulator, and the upper 8 bits of the result
will be stored in the B register.

1 48

NOP NO OPERATION command. This command
simply transfers program execution to the next
step in program memory; only the PC is affected
by this command.

1 12

ORL A, #data LOGICAL OR byte operation. This command
performs a bitwise-OR operation between the
accumulator value and the immediate data byte,
with the result stored in the accumulator. When
this instruction is used to modify an output port,
the output port latches supply the original port
data (for the instruction), not the port pins.

2 12

Page 42 of 51

ORL A, @Ri LOGICAL OR byte operation. This command

performs a bitwise-OR operation between the
accumulator value and the contents of the RAM
location whose address is in bank register “i”,
with the result stored in the accumulator. When
this instruction is used to modify an output port,
the output port latches supply the original port
data (for the instruction), not the port pins.

1 12

ORL A, direct LOGICAL OR byte operation. This command
performs a bitwise-OR operation between the
accumulator value and the contents of RAM
address “direct”, with the result stored in the
accumulator. (“Direct” is an 8-bit address for
either internal RAM or SFR.) When this
instruction is used to modify an output port, the
output port latches supply the original port data
(for the instruction), not the port pins.

2 12

ORL A, Rn LOGICAL OR byte operation. This command
performs a bitwise-OR operation between the
accumulator value and the value in bank
register “n”, with the result stored in the
accumulator. When this instruction is used to
modify an output port, the output port latches
supply the original port data (for the instruction),
not the port pins.

1 12

ORL C, /bit LOGICAL OR bit command. This command
performs an OR operation on the carry bit of
the PSW and the inverse of the indicated bit,
with the result stored in the carry bit. The
indicated bit (source bit) is not altered.

2 24

ORL C, bit LOGICAL OR bit command. This command
performs an OR operation on the carry bit of
the PSW and the indicated bit, with the result
stored in the carry bit. The indicated bit (source
bit) is not altered.

2 24

ORL direct, #data LOGICAL OR byte operation. This command
performs a bitwise-OR operation between the
the contents of RAM address “direct” and the
immediate data byte, with the result stored in
RAM address “direct”. (“Direct” is an 8-bit
address for either internal RAM or SFR.) When
this instruction is used to modify an output port,
the output port latches supply the original port
data (for the instruction), not the port pins. This
instruction can be used to set combinations of
bits in the “direct” RAM register or SFR.

3 24

Page 43 of 51

ORL direct, A LOGICAL OR byte operation. This command

performs a bitwise-OR operation between the
the contents of RAM address “direct” and the
accumulator value, with the result stored in
RAM address “direct”. (“Direct” is an 8-bit
address for either internal RAM or SFR.) When
this instruction is used to modify an output port,
the output port latches supply the original port
data (for the instruction), not the port pins. This
instruction can be used to set combinations of
bits in the “direct” RAM register or SFR.

2 12

POP direct POP command. The contents of the RAM
location addressed by the stack pointer are
copied into the specified “direct” RAM location.
The stack pointer is then decremented by one.
(“Direct” is an 8-bit address for either internal
RAM or SFR.

2 24

PUSH direct PUSH command. The stack pointer is
incremented by one, and the 8-bit “direct”
address is then copied into the RAM location
whose address is contained in the stack pointer.
(“Direct” is an 8-bit address for either internal
RAM or SFR).

2 24

RET RETURN command. This command returns
program execution from a subroutine to the
main program. The RET command pops the
high and low order bytes of the PC off of the SP,
and the SP is also decremented by 2 in the
process. Program execution resumes at the
resulting PC address.

1 24

RETI RETURN FROM INTERRUPT command. The
RETI command pops the high and low order PC
bytes off of the SP and decrements the SP by 2.
Program execution resumes at the newly
popped PC address. The CMX850 interrupt
logic is restored to allow processing of interrupts
with the same priority as the interrupt just
processed. If an interrupt of equal or lower
priority was pending when RETI was performed,
an additional instruction will be performed
before the pending interrupt is processed. The
PSW is not automatically restored to its pre-
interrupt condition.

1 24

RL A ROTATE LEFT command. This command shifts
each bit in the accumulator to the left by one bit.
Bit 7 is shifted into the Bit 0 position.

1 12

RLC A ROTATE LEFT THROUGH CARRY command.
The carry flag bit is shifted into accumulator Bit
0, and accumulator Bit 7 is shifted to the carry
flag position.

1 12

Page 44 of 51

RR A ROTATE RIGHT command. This command

shifts each bit of the accumulator to the right by
one position. Bit 0 is shifted into the Bit 7
position.

1 12

RRC A ROTATE RIGHT THROUGH CARRY
command. This command shifts each bit of the
accumulator to the right by one position. The
carry flag bit is shifted into accumulator Bit 7,
and accumulator Bit 0 is shifted to the carry flag
position.

1 12

SETB bit SET bit command. This command sets the
indicated bit to one. No other bits are altered.

2 12

SETB C SET bit command. This command sets the carry
bit to one. No other bits are altered.

1 12

SJMP rel SHORT JUMP command. This command
increments the PC by 2 and unconditionally
branches to an address equal to the sum of the
“rel” and the PC (after incrementing).

2 24

SUBB A, #data SUBTRACT WITH BORROW operation. This
command subtracts the immediate data byte
and the carry flag from the contents of the
accumulator, then leaves the result in the
accumulator. If the state of the carry flag is
unknown prior to performing a subtraction, clear
the carry flag with a CLR C instruction before
performing the subtraction.

2 12

SUBB A, @Ri SUBTRACT WITH BORROW operation. This
command subtracts the contents of the RAM
location whose address is in bank register “i”
and the carry flag from the contents of the
accumulator, then leaves the result in the
accumulator. If the state of the carry flag is
unknown prior to performing a subtraction, clear
the carry flag with a CLR C instruction before
performing the subtraction.

1 12

SUBB A, direct SUBTRACT WITH BORROW operation. This
command subtracts the contents of RAM
address “direct” and the carry flag from the
contents of the accumulator then leaves the
result in the accumulator. If the state of the
carry flag is unknown prior to performing a
subtraction, clear the carry flag with a CLR C
instruction before performing the subtraction.
(“Direct” is an 8-bit address for either internal
RAM or SFR).

2 12

Page 45 of 51

SUBB A, Rn SUBTRACT WITH BORROW operation. This

command subtracts the byte contained in bank
register “n” and the carry flag from the contents
of the accumulator, then leaves the result in the
accumulator. If the state of the carry flag is
unknown prior to performing a subtraction, clear
the carry flag with a CLR C instruction before
performing the subtraction.

1 12

SWAP A SWAP command. This command swaps the
low-order and high-order nibbles of the
accumulator.

1 12

XCH A, @Ri EXCHANGE command. This command copies
the contents of the RAM location whose
address is stored in bank register “i” into the
accumulator, while copying the contents of the
accumulator into the RAM location whose
address is stored in bank register “i”.

1 12

XCH A, direct EXCHANGE command. This command copies
the contents of the 8-bit “direct” RAM address
into the accumulator while copying the contents
of the accumulator into the 8-bit “direct” RAM
address. (“Direct” is an 8-bit address for either
internal RAM or SFR.)

2 12

XCH A, Rn EXCHANGE command. This command copies
the contents of bank register “n” into the
accumulator while copying the contents of the
accumulator into bank register “n”.

1 12

XCHD A, @Ri EXCHANGE DIGIT command. This command
will exchange bits 3-0 of the accumulator with
bits 3-0 of the RAM location whose address is
stored in bank register “i”. The upper 4 bits of
both registers are not affected by this command.

1 12

XRL A, #data LOGICAL EXCLUSIVE-OR byte operation. This
command performs a bitwise-XOR operation
between the accumulator value and the
immediate data byte, with the result stored in
the accumulator. When this instruction is used
to modify an output port, the output port latches
supply the original port data (for the instruction),
not the port pins.

2 12

XRL A, @Ri LOGICAL EXCLUSIVE-OR byte operation. This
command performs a bitwise-XOR operation
between the accumulator value and the
contents of the RAM location whose address is
in bank register “i”, with the result stored in the
accumulator. When this instruction is used to
modify an output port, the output port latches
supply the original port data (for the instruction),
not the port pins.

1 12

Page 46 of 51

XRL A, direct LOGICAL EXCLUSIVE-OR byte operation. This
command performs a bitwise-XOR operation
between the accumulator value and contents of
RAM address “direct”, with the result stored in
the accumulator. (“Direct” is an 8-bit address
for either internal RAM or SFR.) When this
instruction is used to modify an output port, the
output port latches supply the original port data
(for the instruction), not the port pins.

2 12

XRL A, Rn LOGICAL EXCLUSIVE-OR byte operation. This
command performs a bitwise-XOR operation
between the accumulator value and the value in
bank register “n”, with the result stored in the
accumulator. When this instruction is used to
modify an output port, the output port latches
supply the original port data (for the instruction),
not the port pins.

1 12

XRL direct, #data LOGICAL EXCLUSIVE-OR byte operation. This
command performs a bitwise-XOR operation
between the the contents of RAM address
“direct” and the immediate data byte, with the
result stored in RAM address “direct”. (“Direct”
is an 8-bit address for either internal RAM or
SFR.) When this instruction is used to modify
an output port, the output port latches supply
the original port data (for the instruction), not the
port pins. This instruction can be used to
complement combinations of bits in the “direct”
RAM register or SFR.

3 24

XRL direct, A LOGICAL EXCLUSIVE-OR byte operation. This
command performs a bitwise-XOR operation
between the contents of RAM address “direct”
and the accumulator value, with the result
stored in RAM address “direct”. (“Direct” is an
8-bit address for either internal RAM or SFR.)
When this instruction is used to modify an
output port, the output port latches supply the
original port data (for the instruction), not the
port pins. This instruction can be used to
complement combinations of bits in the “direct”
RAM register or SFR.

2 12

Table 18: CMX850 Instruction Set

Addressing Modes

The CMX850 has five addressing modes: direct, indirect, register, immediate, and indexed
addressing.

Direct Addressing

The direct addressing mode uses an 8-bit opcode followed by an 8-bit address for either
internal RAM (first 128 bytes) or SFR. The address can correspond to a byte or a bit in a bit-
addressable byte.

For example, if RAM address 21h contains A0h, then the command:
 MOV A, 21;
…will copy A0h into the accumulator.

Page 47 of 51

(Note that internal XRAM is accessed through the Ri + R2 or 16-bit data pointer.)

Indirect Addressing

With indirect addressing, the instruction specifies the address of the register that contains the
actual operand. The @ symbol is used to indicate indirect addressing.

For example, if bank register R1 contains 21h, and if RAM address 21h contains the value
FFh, the command:
 MOV A, @R1;
…will cause FFh to be copied into the accumulator.

Indirect addressing can access internal and external RAM, and the addresses can be either
8-bits or 16-bits long. An 8-bit indirect address can refer to the Stack Pointer (SP) or to either
R0 or R1 of the currently selected working bank register, which is selected with bits 4-3 of the
PSW SFR. A 16-bit indirect address corresponds to the currently selected data pointer
register or Ri + R2. (The CMX850 has two data pointer registers, and bit 0 of the DPS SFR
determines which data pointer is currently selected.)

The CMX850 internal XRAM is accessed with indirect addressing via the MOVX command.
Bits 4-3 (write destination) and bits 1-0 (read source) of the MEMCON SFR register determine
whether or not the internal XRAM is accessed with the MOVX command.

Register Addressing

Commands that use register addressing use the contents of one of the working registers R0-
R7 as the operand. For example, if register R0 contains C0h, then the command:
 MOV A, R0;
…will copy C0h into the accumulator.

Immediate Addressing

With immediate addressing, the value to be executed is passed directly as part of the
instruction. The operand can either be a numeric constant or its symbolic name and can be
either an 8-bit or 16-bit number. The # symbol is used to indicate immediate addressing.

For example, the following command:
 ADD A, #83;
…will add 83 to the contents of the accumulator, with the result left in the accumulator.

Indexed Addressing

Indexed addressing is used for external program memory accesses and for performing jumps
to subroutines. With indexed addressing, a 16-bit base value (e.g. DPTR or PC) value is
added to an 8-bit value (i.e. accumulator) to arrive at the desired memory address.

For example, the following command:
 MOVC A, @A + DPTR
…will move (copy) a code byte relative to the DPTR plus the accumulator to the accumulator.

Conclusion

An enhanced 8051 Microcontroller and integrated V.22bis modem combine to make the
CMX850 a versatile platform for many types of telecom applications. The information in this
application note should provide clarification on the many features available in the CMX850
and assist design engineers as they integrate the CMX850 into their projects.

Page 48 of 51

Appendix

RTC flow of operation

; Routine to configure the RTC for use

RTC_SETUP:

; Enable the RTC circuit (bit 7 set)
; Stop the RTC counter incrementing (bit 3 set)
; Set RTC time interrupt interval to 1/second (bits 0-2 set to 0x04)

MOV RTCCON,#0x8C

; Setup time registers with start value (0x00000000)

CLR A
MOV TIME0,A
MOV TIME1,A
MOV TIME2,A
MOV TIME3,A

; Setup alarm registers with start value (0x00000004)

MOV ALM0,#0x04
MOV ALM1,A
MOV ALM2,A
MOV ALM3,A

; Time interval interrupt level triggered (INT6, ICON1B bit 0 clear)
; Alarm interrupt level triggered (INT7, ICON1B bit 2 clear)

ANL ICON1B,#0xFA

; Enable time interval interrupt (INT6, IE_1 bit 4 set)
; Enable alarm interrupt (INT7, IE_1 bit 5 set)

ORL IE_1,#0x30

; Start the RTC counter incrementing (bit 3 set)

ANL RTCCON,#0xF7
RET

;RCT time interval interrupt
;Interrupt is generated once every programmed time interval (once per second ;in this
example)

RTC_INT6:

; Clear time interval interrupt (RTCCON, bit 5 set)

ORL RTCCON,#0x20

; Perform any other required actions here
; ...

Page 49 of 51

RETI

; Alarm interrupt
; Interrupt generated once time register value is greater than or equal
; to the alarm register value (four seconds in this example)

RTC_INT7:
 PUSH ACC ; Save accumulator contents

; RTC alarm register still set to 0x00000004 ?

 MOV A,#0x04
 CJNE A,ALM0,SECOND_PASS

FIRST_PASS:

 ; This is the first alarm interrupt
 ; Change the alarm register value to 0x00000006

 MOV ALM0,#0x06
 JMP RTC_INT7_EXIT

SECOND_PASS:

 ; Disable alarm interrupt (INT7, IE_1 bit 5 clear)
 ; Stops alarm interrupts from re-occurring once interrupt service
 ; routine completes

 ANL IE_1,#0xDF

 ; Perform any other required actions here
 ; ...

RTC_INT7_EXIT:
 POP ACC ; Restore accumulator contents
 RETI

NOTE:

In this example the interrupt sequence timeline would be as follows

0 second: Routine RTC_SETUP run
1 second: Time interval interrupt (INT6)
2 second: Time interval interrupt (INT6)
3 second: Time interval interrupt (INT6)
4 second: Time interval interrupt (INT6)
 Alarm interval (INT7), First pass, alarm set to six seconds
5 second: Time interval interrupt (INT6)
6 second: Time interval interrupt (INT6)
 Alarm interval (INT7), Second pass, alarm disabled
7 second: Time interval interrupt (INT6)
8 second: Time interval interrupt (INT6)
9 second: Time interval interrupt (INT6)
...

Page 50 of 51

References

1) CMX850 Data Sheet, CML Microcircuits,
http://www.cmlmicro.com/products/datasheets/Docs/cmx850ds.PDF

2) EV8500 User Manual, CML Microcircuits,
http://www.cmlmicro.com/products/datasheets/Docs/ev8500ds.PDF

3) James W. Stewart and Kai X. Miao, The 8051 Microcontroller; Hardware, Software
and Interfacing, 2nd Edition, Prentice Hall, Upper Saddle River, NJ, 1999.

4) Myke Predko, Handbook of Microcontrollers, McGraw-Hill, New York, 1999.
5) John Wharton, An Introduction to the Intel MCS-51 Single-Chip Microcomputer

Family, Intel Application Note AP-69, Intel Corporation, 1980.
6) MCS51 Microcontroller Family User’s Manual, Intel Corporation, 1994.
7) Keil Software – Embedded Development Software - http://www.keil.com

Page 51 of 51

CML does not assume any responsibility for the use of any circuitry described. No IPR or
circuit patent licences are implied. CML reserves the right at any time without notice to
change the said circuitry and this product specification. CML has a policy of testing every
product shipped using calibrated test equipment to ensure compliance with this product
specification. Specific testing of all circuit parameters is not necessarily performed.

www.cmlmicro.com

For FAQs see: http://www.cmlmicro.com/products/faqs/index.htm

For a full data sheet listing see:
http://www.cmlmicro.com/products/datasheets/download.htm

For detailed application notes:
http://www.cmlmicro.com/products/applications/index.htm

Oval Park,
Langford, Maldon,
Essex,
CM9 6WG -
England.

Tel: +44 (0)1621
875500

Fax: +44 (0)1621
875600

Sales:
sales@cmlmicro.co
m

Technical Support:
techsupport@cmlm
icro.com

4800 Bethania
Station Road,
Winston-Salem,
NC 27105 - USA.

Tel: +1 336 744
5050,
 800 638 5577
Fax: +1 336 744
5054

Sales:
us.sales@cmlmicro.c
om

Technical Support:
us.techsupport@cml
micro.com

No 2 Kallang
Pudding Road, 09 to
05/06 Mactech
Industrial Building,
Singapore 349307

Tel: +65 7450426

Fax: +65 7452917

Sales:
sg.sales@cmlmicro.c
om

Technical Support:
sg.techsupport@cml
micro.com

No. 218, Tian Mu
Road West, Tower 1,
Unit 1008,
Shanghai Kerry
Everbright City,
Zhabei,
Shanghai 200070,
China.

Tel: +86 21
63174107
 +86 21
63178916
Fax: +86 21
63170243

Sales:
cn.sales@cmlmicro.c
om.cn

Technical Support:
sg.techsupport@cml
micro.com

