

CMX7241/CMX7341 PMR Common Platform Processor

7241/7341FI-4.x: APCO P25 and Analogue PMR Processor

D/7241_7341_FI4.x/1 May 2017

DATASHEET

Advance Information

Features

- Auto detect of Digital and Analogue Receive
- Digital PMR Functions:

APCO P25 conventional:

Air Interface Physical Layer (layer 1)

C4FM modulation / demodulation

Bit and symbol definition

 $Frequency\ and\ symbol\ synchronisation$

Transmission burst building and splitting

- Tx Sequencer
- Analogue PMR EN 300 086 / TIA 603D:

Voice processing

De-emphasis / pre-emphasis

Tx Limiter and splatter filter

Voice scrambler

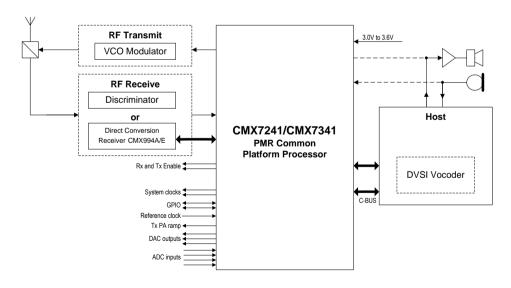
Voice compander

CTCSS and DCS generation and detection

Support for external CTCSS and DCS

Selcall generation and detection

DTMF generation and detection


1200/2400 bps FFSK modem (MPT1327 compatible)

Additional Features

- 2 Auxiliary ADCs (4 Multiplexed Inputs)
- 4 Auxiliary DACs
- 2 Auxiliary System Clock Outputs
- Tx Outputs for Two-point or I/Q Modulation
- Rx Inputs for Limiter/Discriminator or CMX994 Direct Conversion (I/Q) Receiver
- C-BUS serial interface to CMX994/A/E Direct Conversion Receiver
- Voice Codec supports external vocoders (SPI/PCM/I²S compatible e.g. IMBE)
- C-BUS Serial Interface to Host micro
- Flexible Powersave Modes
- Low-power (3.3V) Operation
- Dedicated hardware reset pin
- Single-ended inputs (CMX7241)
- Differential inputs (CMX7341)
- Available in LQFP or VQFN Packages (CMX7341 VQFN only)

Applications

- Multi-mode PMR radio
- FDMA digital PMR
- Analogue PMR

1 Brief Description

The 7241/7341FI-4.x Function Image™ (FI) implements a half-duplex C4FM modem and a large proportion of the C4FM Air Interface physical layer. In addition, the FI also supports Analogue FM voice modes with flexible signalling options. In conjunction with a suitable host and an RF transceiver, a compact, low-cost, low-power digital PMR radio conforming to C4FM digital radio standards and Analogue EN 300 086 / TIA 603D can be realised. The FI analyses incoming traffic, detects the modulation type and switches to the associated operating mode. This ensures that dual mode, analogue/digital PMR operation can be achieved on a single radio platform without the need to re-configure hardware or software by loading alternative FIs.

The CMX7241 and CMX7341 when loaded with the FI are identical in functionality; the only difference between the two devices is in the input stage: the CMX7241 has single-ended inputs and the CMX7341 is a differential input version.

The embedded functionality of the 7241/7341FI-4.x minimises host microcontroller interactions enabling the lowest operating power and therefore the longest battery life. The CMX7241/7341 can also provide audio codec functionality for vocoders under direct host control.

The in-built signalling options allow the device to be implemented into legacy Analogue FM systems making use of CTCSS / DCS sub-audio signalling, Selcall / DTMF signalling or 1200/2400 bps FFSK trunked systems using MPT1327 or custom protocols.

Both digital and analogue functionality can be active at the same time, allowing the host to auto-detect the type of signalling on the channel.

The device allows the designer to choose between a conventional limiter/discriminator receiver architecture or an I/Q-based direct conversion architecture utilising the built-in support for the CMX994 Direct Conversion Receiver.

The CMX7241 and CMX7341 utilise CML's proprietary *FirmASIC*[®] component technology. On-chip sub-systems are configured by a Function Image™: This is a data file that is uploaded during device initialisation and defines the device's function and feature set. The Function Image™ can be loaded automatically from an external serial memory or host microcontroller over the built-in C-BUS serial interface. The device's functions and features may be enhanced by future Function Image™ releases, facilitating in-the-field upgrades. This document refers specifically to the features provided by Function Image™ 7241/7341FI-4.0.x.x.

Other device features include two auxiliary ADCs with four selectable inputs and four auxiliary DAC interfaces (with an optional RAMDAC on the first DAC output, to facilitate transmitter power ramping).

The CMX7241 and CMX7341 have flexible powersaving modes and are available in the following packages: CMX7241 (VQFN and LQFP), CMX7341 (VQFN only).

Note that text shown in pale grey indicates features that will be supported in future versions of the Function Image™.

This datasheet is the first part of a two-part document comprising datasheet and user manual: the datasheet/user manual combination can be obtained by registering your interest in this product with your local CML representative.

© 2017 CML Microsystems Plc Page 2 D/7241_7341_FI4.x/1

CONTENTS

<u>Section</u>	<u>!</u>	Page
1	Brief Description	2
2	Block Diagram	8
3	Signal List	
3.1	Signal Definitions	
4	Component and PCB Recommendations	
4.1	Recommended External Components	
4.2	PCB Layout Guidelines and Power Supply Decoupling	
4.3 4.4	CMX994/CMX994A/CMX994E Interface Serial Port Interfaces	
4.4 4.5	RESET Pin	
5	General Description	
5.1	7241/7341FI-4 Features	
5.2	Digital Features	
5.3	Analogue Features	
5.4	Auxiliary Functions	
5.5	Interface	
5.6	System Design	
5.6.1	General	
5.6.2	Third-party Vocoder Support	
5.6.3	Data Transfer	
5.6.4	CMX994 Connection (I/Q Mode)	
5.6.5	Hardware AGC – AuxADC1 Connection	
5.6.6	RSSI Measurement (I/Q Mode)	
5.6.7	RSSI Measurement (LD mode)	
5.7	C4FM Modem	
5.7.1	Modulation	
5.7.2	Internal Data Processing	
5.7.3	Frame Sync Detection and Demodulation	
5.7.4	Voice Coding	
5.7.5	Radio Performance Requirements	
5.8	Audio/Voice Functions	
5.8.1	Microphone	
5.8.2	Speaker	
5.8.3	Modulation	
5.8.4	Audio / Voice processing	
5.8.5	Sub-Audio Signalling	
5.8.6	In-band Signalling	
6	Detailed Descriptions	
6.1	Xtal Frequency	27
6.2	Host Interface	
6.2.1	C-BUS Operation	
6.2.2	C-BUS FIFO operation	
6.3	Function Image™ Loading	
6.3.1	FI Loading from Host Controller	
6.4	External Codec Support	
6.4.1	DVSI Vocoder Interface	
6.4.2	Support for I ² S Mode	
6.5	Device Control	_
6.5.1	General Notes	
6.5.2	Interrupt Operation	
6.5.3	Signal Routing	
6.5.4	Mode Control	
6.5.5	Tx Mode C4FM Raw	
6.5.6	Tx Mode PRBS	
6.5.7	Tx Mode Preamble	
6.5.8	Tx Mode Mod Set-up	
6.5.9	Tx Mode Test	35

6.5.10	Tx Sequencer	35
6.5.11	Rx Mode Raw	36
6.5.12	Rx Mode Eye	36
6.5.13	Rx Pass-through Mode	36
6.5.14	Rx Mode with CMX994 AGC (I/Q Mode only)	37
6.5.15	Rx Mode with CMX994 I/Q Cal (I/Q Mode only)	37
6.5.16	Rx Mode with CMX994 Powersave (I/Q mode only)	38
6.5.17	Data Transfer	41
6.5.18	CMX994 Pass-through	42
6.6	Analogue PMR Description	42
6.6.1	Sub-Audio Processing	42
6.6.2	Voice Processing	42
6.6.3	300Hz HPF	42
6.6.4	12.5kHz/25kHz Channel Filters	43
6.7	FFSK Data Modem	48
6.7.1	Receiving FFSK Signals	49
6.7.2	Transmitting FFSK Signals	
6.8	Selcall Signalling	
6.8.1	Receiving and Decoding Selcall Tones	
6.8.2	Transmitting Selcall Tones	51
6.8.3	Alternative Selcall Tone Sets	51
6.9	DTMF Signalling	51
6.9.1	Reception and Decoding of DTMF	51
6.9.2	Transmission of DTMF	
6.10	Squelch Operation	52
6.11	GPIO Pin Operation	
6.12	Auxiliary ADC Operation	53
6.13	Auxiliary DAC/RAMDAC Operation	
6.14	Digital System Clock Generators	
6.14.1	Main Clock Operation	
6.14.2	System Clock Operation	56
6.15	Signal Level Optimisation	
6.15.1	Transmit Path Levels	
6.15.2	Receive Path Levels	
6.16	Tx Spectrum Plots	58
7	Performance Characteristics	59
7.1	Electrical Performance	
7.1.1	Absolute Maximum Ratings	59
7.1.2	Operating Limits	
7.1.3	Operating Characteristics	61
7.1.4	Parametric Performance	66
7.2	C-BUS Timing	
7.3	Packaging	69

<u>Table</u>	<u>Page</u>
Table 1 Definition of Power Supply and Reference Voltages	11
Table 2 Recommended External Components	
Table 3 Recommended External Components when using CMX994	18
Table 4 Serial Port Assignments	
Table 5 CMX994 Connections	21
Table 6 Modulation Deviation	
Table 7 Xtal/Clock Frequency Settings for Program Block 3	
Table 8 C-BUS FIFO Registers	
Table 9 BOOTEN Pin States	
Table 10 DVSI Vocoder Connections	
Table 11 Device Mode Selection	
Table 12 C4FM Modem Control Selection	
Table 13 Analogue Mode Selection	
Table 15 Variation in Average Current Consumption with Different Powersave States / Test Conditions	
Table 16 DCS Codes and Values	
Table 17 CTCSS Codes and Values	
Table 18 Data Frequencies for MPT1327 mode	
Table 19 Selcall Tones	
Table 20 Alternative Selcall Tone Sets	
Table 21 DTMF Tone Pairs	_
Table 22 DTFM Twist	
Figur <u>e</u>	Page
Figure 1 CMX7241/CMX7341 Block Diagram	Q
Figure 2 CMX7241/CMX7341 Block Diagram	
Figure 3 CMX7341 (Q3) Recommended External Components	
Figure 4 CMX7241 (L4/Q3) Power Supply and Decoupling	
Figure 5 CMX7341 (Q3) Power Supply and De-coupling	
Figure 6 CMX7241/CMX994 Interface	
Figure 7 CMX7341/CMX994 Interface	
Figure 8 DVSI Vocoder Connection	
Figure 9 CMX994 and DVSI Connection	
Figure 10 RSSI in I/Q Mode	
Figure 11 C4FM PRBS Waveform (Eye Diagram)	
Figure 12 C4FM Modulation Performance	
Figure 13 C4FM Modulation Characteristics	23
Figure 14 Internal C4FM Data Processing Blocks	24
Figure 15 Additional Internal Data Processing in I/Q Mode	24
Figure 16 C-BUS Transactions	28
Figure 17 C-BUS Data-Streaming Operation	29
Figure 18 FI Loading from Host	31
Figure 19 Tx Sequencer Delay Timers	
Figure 20 Frequency Response for Rx Pass-through Mode	
Figure 21 Format of CMX994A/E Extended Rx Offset register (\$17)	
Figure 22 Format of I/Q DC calibration reporting when CMX994A/CMX994E is selected	
Figure 23 Powersave States	
Figure 24 Effect of Powersave as a Function of "OFF" Time	
Figure 25 Effect of Powersave as a Function of "OFF" Time (Best and Worst Case)	
Figure 26 Rx and Tx Level Adjustments and Routing	
Figure 27 Rx Audio Response	
Figure 28 Tx Audio Response	
Figure 29 CTCSS and DCS filters	
Figure 30 Modulating Waveforms for 1200 MSK/FFSK Signals	
Figure 31 AuxADC IRQ Operation	
Figure 32 Digital Clock Generation Schemes	
Figure 34 By Levels (LD mode)	
Figure 34 Rx Levels (LD mode)	

Figure 35	Tx Modulation Spectra – 4.8kbps	.58
_	C-BUS Timing	
_	Mechanical Outline of 48-lead VQFN (Q3)	
Figure 38	Mechanical Outline of 48-pin LQFP (L4)	.69

<u>History</u>

Version	Version Changes				
1	First public release as Advance Information	May 2017			
Α	Advance Draft	May 2017			

It is recommended that you check for the latest product datasheet version from the CML website: [www.cmlmicro.com/]. This is Advance Information; changes and additions may be made to this specification. Parameters marked TBD or left blank will be included in later issues. Items that are highlighted or greyed out should be ignored. These will be clarified in later issues of this document.

2 Block Diagram

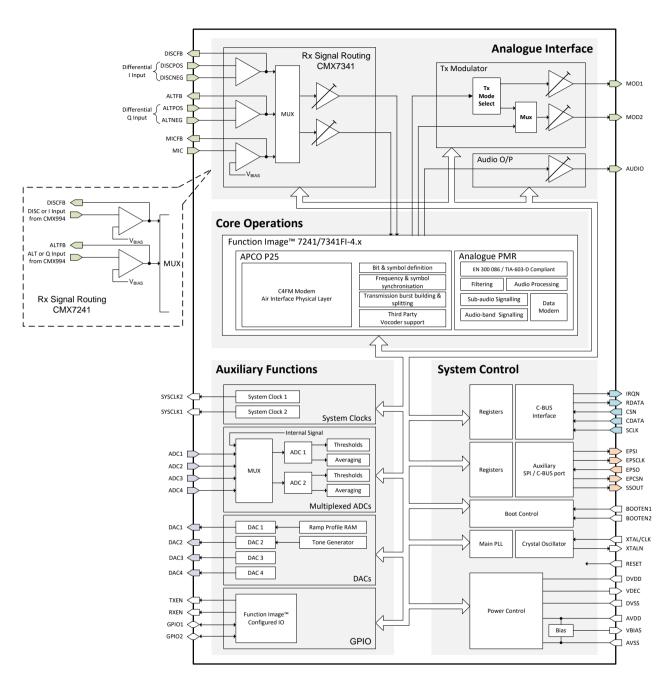


Figure 1 CMX7241/CMX7341 Block Diagram

3 Signal List

CMX7241 48-pin Q3/L4	CMX7341 48-lead Q3	Pin Name	Туре	Description			
1	1	1 EPSI OP Serial Data Output					
2	2	EPSCLK	OP	Serial Clock Output	_		
3	3 3 EPSO		IP+PD	Serial Data Input	Αι	ixiliary SPI/C-BUS	
4	4	EPCSN	OP				
5	5	BOOTEN1	IP+PD	Used in conjunction with BOOTEN the bootstrap program	2 to deter	mine the operation of	
6	6	BOOTEN2	IP+PD	Used in conjunction with BOOTEN the bootstrap program	1 to deter	mine the operation of	
7	7	RESET	PWR	Dedicated reset function – activ same effect as a power on reset. I	_		
8	8	IRQN	OP	A 'wire-ORable' output for connect the Interrupt Request input of the Pulled down to DV _{SS} when active high impedance when inactive. Ar	host. and is	Host C-BUS	
				pull-up resistor (R1) is required. Internally-generated 1.8V digital s	upply volta	age. Must be	
	_			decoupled to DV _{SS} by capacitors r	nounted cl	ose to the device pins.	
9	9	9 VDEC PWR No other connections allowed. If the device is to 1.8V external supply then the VDEC pin must be to the external 1.8V regulated supply.					
10	10	RXENA			= 1)		
11	11	GPIOA	BI	General Purpose I/O pin	(,	,	
12	12	GPIOB	BI General Purpose I/O pin				
13	13	SYSCLK1	OP	OP Synthesised Digital System Clock Output 1			
14	14	DVSS	PWR	Digital ground	<u> </u>		
15	15	TXENA	OP	Tx Enable – active when in Tx mod	de (\$C1:b1	= 1)	
16		DISC	IP	Discriminator inverting input or I i	nput from	CMX994	
17		DISCFB	OP	Discriminator input amplifier feedback			
18		ALT	IP	Alternate inverting input or Q inpu	ut from CN	1X994	
19		ALTFB	OP	Alternate input amplifier feedback	<		
	16	DISCPOS	IP	Differential input1, positive and ne	ogativo Liu	anut from CMYQQA	
	17	DISCNEG	IP		egative. i ii	Tput from Civix994	
	18	DISCFB	OP	Input1 amplifier feedback			
	19	ALTPOS	IP	Differential input2, positive and n	egative. O	input from CMX994	
	20	ALTNEG	IP		J J. Q	,	
	21	ALTFB	OP	Input2 amplifier feedback			
20	22	MICFB	OP	Microphone input amplifier feedb	ack		
21	23	MIC	IP DWD	Microphone inverting input			
22	n/c	AVSS MOD1	PWR	Analogue ground			
23 24	24 25	MOD1 MOD2	OP OP	Modulator 1 output			
24	25	IVIUUZ	UP	Modulator 2 output	of approx	AVan/2 except when	
25	26	VBIAS	ОР	Internally generated bias voltage of approx. AV _{DD} /2, except v the device is in 'Powersave' mode when V _{BIAS} will discharge to AV _{SS} . Must be decoupled to AV _{SS} by a capacitor mounted clos the device pins. No other connections allowed unless buffere		s will discharge to itor mounted close to	
26	27	AUDIO					
27	28	ADC1	IP	Auxiliary ADC input 1	Each of th	e two ADC blocks can	
28	29	ADC2	IP	Auxiliary ADC input 2		nput signal from any	
29	29 30 ADC3 IP Auxilia		Auxiliary ADC input 3		ese input pins, or from		
30			IP	Auxiliary ADC input 4		ALT or DISC input pins. In 6.12 for details.	

CMX7241 48-pin Q3/L4	CMX7341 48-lead Q3	Pin Name	Туре	Description	
31	32	AVDD	PWR	Analogue +3.3V supply rail. Levels and th are proportional to this voltage. This pin ${\rm AV}_{\rm SS}$ by capacitors mounted close to the	should be decoupled to
32	33	DAC1	OP	Auxiliary DAC output 1 / RAMDAC	
33	34	DAC2	OP	Auxiliary DAC output 2 / Tone Generator	output
34	n/c	AVSS	PWR	Analogue ground	
35	35	DAC3	OP	Auxiliary DAC output 3. See Note 2	
36	36	DAC4	OP	Auxiliary DAC output 4	
37	37	DVSS	PWR	Digital Ground	
38	38	VDEC	PWR	Internally generated 1.8V supply voltage. DV _{SS} by capacitors mounted close to the No other connections allowed. If the devi 1.8V external supply, then VDEC pin must the 1.8V external regulated supply.	device pins. ice is to be run from a
39	39	XTAL/CLK	IP	Input from the external clock source or X	tal
40	40	XTALN	ОР	NC if external clock used. Digital +3 3V supply rail. This pin should be decoupled to DVss	
41	41	DVDD	PWR		
42	42	CDATA	IP	Command Data input from the μC	
43	43	RDATA	TS OP	Reply Data tri-state output to the μ C (high impedance when not sending data to the μ C).	Host C-BUS
44	44	SSOUT	OP	Frame Sync for SPI Codec	Auxiliary SPI/C-BUS
45	45	DVSS	PWR	Digital ground	
46	46	SCLK	IP	Serial clock input from the μC	Host C-BUS
47	47	SYSCLK2	OP	Synthesised Digital System Clock 2	
48	48	CSN	IP	Chip Select input from the μC (no internal pullup on this input)	Host C-BUS
Exposed Metal Pad	Exposed Metal Pad	SUBSTRATE	~	The central metal pad (which is exposed be connected to analogue ground (AV _{SS}). No other electrical connection is permitted.	•

Note 1: IP = Input (+ PU/PD = internal pullup / pulldown resistor)

OP = Output
BI = Bidirectional
TS OP = 3-state Output
PWR = Power Connection

NC = No Connection - should NOT be connected to any signal.

Colour Definitions:

= Aux SPI/C-BUS = Host C-BUS

= Analogue Inputs/Outputs

= ADCs/DACs

Note 2: In CMX7341 only, this is a dual-purpose pin which, for some FIs, may have an alternative configuration. However for FI-4, this pin ONLY functions as DAC3.

3.1 Signal Definitions

Signal Name	Pins	Usage			
AV_{DD}	AVDD	Power supply for analogue circuits			
DV_{DD}	DVDD	Power supply for digital circuits			
V_{DEC}	VDEC	Power supply for core logic, derived from DVDD by on-chip regulator			
V_{BIAS}	S VBIAS Internal analogue reference level, derived from AVDD				
AV _{SS}	AV _{SS} AVSS Ground for all analogue circuits				
DV _{SS}	DVSS	Ground for all digital circuits			

Table 1 Definition of Power Supply and Reference Voltages

4 Component and PCB Recommendations

4.1 Recommended External Components

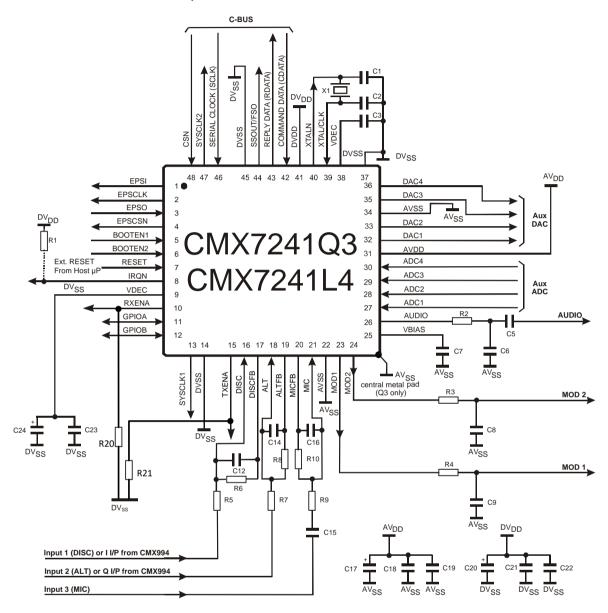


Figure 2 CMX7241 (L4 and Q3) Recommended External Components

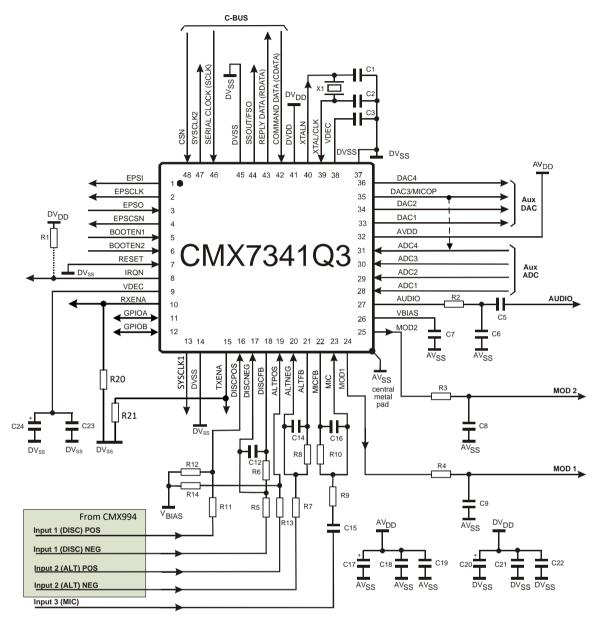


Figure 3 CMX7341 (Q3) Recommended External Components

Table 2 Recommended External Components

R1	100k Ω	C1	18pF	C11	not used	C21	10nF
R2	20k $Ω$	C2	18pF	C12	100pF	C22	10nF
R3	20k $Ω$	C3	10nF	C13	not used	C23	10nF
R4	20k $Ω$	C4	not used	C14	100pF	C24	10μF
R5	100k $Ω$	C5	1nF	C15	note 5		
	(note 2)						
R6	100k Ω	C6	100pF	C16	200pF		
R7	100k $Ω$	C7	1μF	C17	10μF		
	(note 3)						
R8	100k Ω	C8	100pF	C18	10nF	X1	19.2MHz
R9	See note 4	C9	100pF	C19	10nF		See note 1
R10	100k Ω	C10	not used	C20	10uF		

R11	100k Ω		
R12	100k Ω	R20	47k Ω
R13	100k Ω	R21	47k Ω
R14	100kO		

Resistors $\pm 5\%$, capacitors and inductors $\pm 20\%$ unless otherwise stated.

Notes:

- 1. X1 can be a crystal or an external clock generator; this will depend on the application. The tracks between the crystal and the device pins should be as short as possible to achieve maximum stability and best start up performance. By default, a 19.2MHz oscillator is assumed (in which case C1 and C2 are not required), other values could be used if the various internal clock dividers are set to appropriate values.
- 2. For CMX7241 operation, R5 should be selected to provide the desired dc gain of the discriminator input, as follows:

$$|GAIN_{DISC}| = 100k\Omega / R5$$

The gain should be such that the resultant output at the DISCFB pin is within the DISC input signal range specified in 6.15.2. For C4FM modulation, this signal should be dc coupled from the Limiter/ Discriminator output.

3. For CMX7241 operation, R7 should be selected to provide the desired dc gain of the alternative input as follows:

$$|\mathsf{GAIN}_{\mathsf{AIT}}| = 100 \mathrm{k}\Omega / \mathrm{R7}$$

The gain should be such that the resultant output at the ALTFB pin is within the alternative input signal range specified in 6.15.

4. R9 should be selected to provide the desired dc gain (assuming C15 is not present) of the microphone input as follows:

$$|GAIN_{MIC}| = 100k\Omega / R9$$

The gain should be such that the resultant output at the MICFB pin is within the microphone input signal range specified in 6.15.1. For optimum performance with low signal microphones, an additional external gain stage may be required.

5. C15 should be selected to maintain the lower frequency roll-off of the MIC input as follows:

$$C15 \ge 30nF \times |GAIN_{MIC}|$$

- 6. When used with a Limiter/Discriminator Receiver, ALT and ALTFB connections allow the user to have a second discriminator or microphone input. Component connections and values are as for the respective DISC and MIC networks. If this input is not required, the ALT pin should be connected to AVss.
- 7. AUDIO output is used when SPI-Codec or Analogue mode has been selected.
- 8. A single 10µF electrolytic capacitor (C24, fitted as shown) may be used for smoothing the power supply to both VDEC pins, providing they are connected together on the pcb with an adequate width power supply trace. Alternatively, separate smoothing capacitors should be connected to each VDEC pin. High frequency decoupling capacitors (C3 and C23) must always be fitted as close as possible to both VDEC pins.
- 9. TXENA and RXENA should be pulled down by an external resistor (R20, R21) to be directly compatible with the CMX994 (active high signals). For compatibility with earlier 7141-based FI operation, they should be pulled high (active low signals).

4.2 PCB Layout Guidelines and Power Supply Decoupling

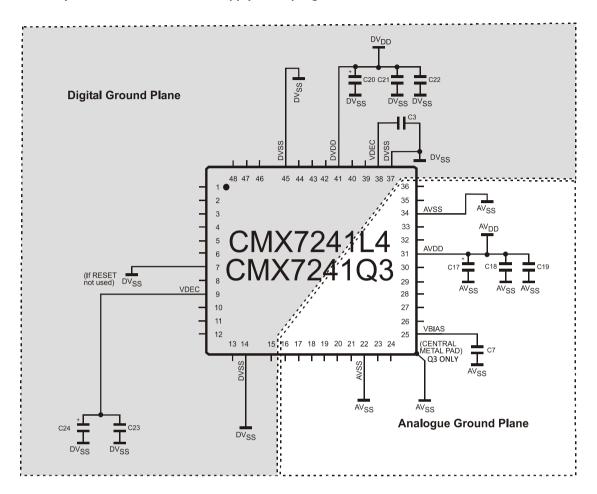


Figure 4 CMX7241 (L4/Q3) Power Supply and Decoupling

Component Values as per Figure 2

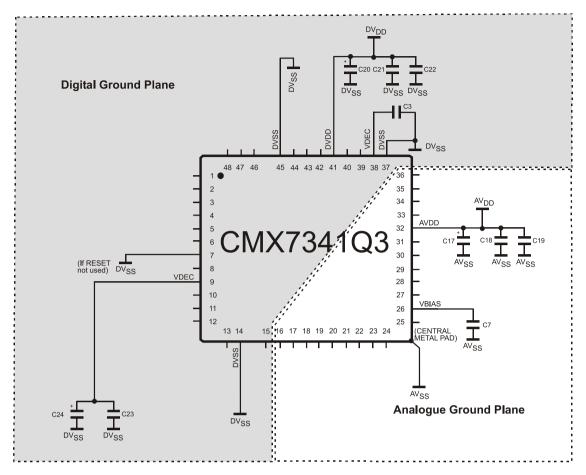


Figure 5 CMX7341 (Q3) Power Supply and De-coupling

Component Values as per Figure 3

Notes:

- 1. It is important to protect the analogue pins from extraneous in-band noise and to minimise the impedance between the CMX7241/7341 and the supply and bias de-coupling capacitors. The de-coupling capacitors C3, C7, C18, C19, C21, C22 and C24 should be as close as possible to the CMX7241/7341. It is therefore recommended that the printed circuit board is laid out with separate ground planes for the AVSS and DVSS supplies in the area of the device, with provision to make links between them, close to the device. Use of a multi-layer printed circuit board will facilitate the provision of ground planes on separate layers.
- VBIAS is used as an internal reference for detecting and generating the various analogue signals. It must be carefully decoupled, to ensure its integrity, so apart from the decoupling capacitor shown, no other loads should be connected. If VBIAS needs to be used elsewhere in the design, it should be buffered with a high input impedance buffer.
- 3. The single ended microphone input and audio output must be ac coupled (as shown), so that their return paths can be connected to AVSS without introducing dc offsets. Further buffering of the audio output is advised.
- 4. The crystal, X1. may be replaced with an external clock source.
- 5. The device executes an internal scheduler running at 4kHz, which may result in current "spikes" on the DVDD line, which must be taken into account when designing the power supply circuitry.

4.3 CMX994/CMX994A/CMX994E Interface

When operating the CMX7241 and CMX7341 in I/Q mode, the interface to the CMX994 shown in Figure 6 and Figure 7 respectively should be used. Component values are shown in Table 3. Where values are not shown refer to the CMX994/A/E Datasheet. The CMX7341 allows for a differential interface directly to the CMX994. Resistors R20 and R21 are required to ensure that the TXENA and RXENA signals are kept in an inactive state during FI loading, and to inform the FI that these signals should be implemented active high.

The CMX994 and the CMX7341 may share the same 19.2MHz reference (however note that the CMX7341 requires a CMOS logic compatible signal).

AuxADC1 is configured to sense the Adjacent/Alternate channel power levels and so improve the performance of the CMX994 AGC system in situations where high levels of interference may be encountered. The CMX994 should be connected to the Auxilliary SPI/C-BUS using EPCSN as the chip select.

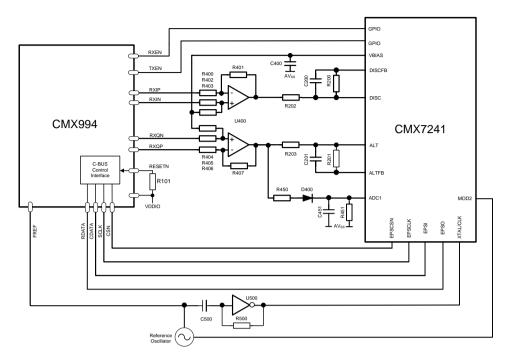


Figure 6 CMX7241/CMX994 Interface

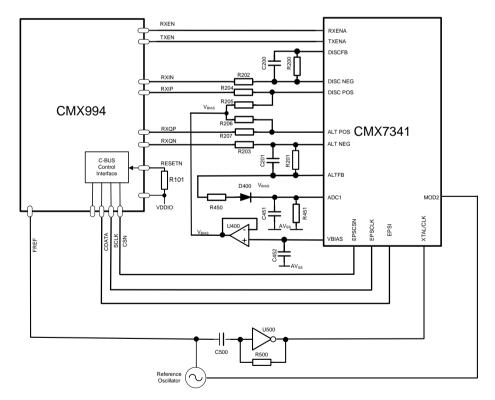


Figure 7 CMX7341/CMX994 Interface

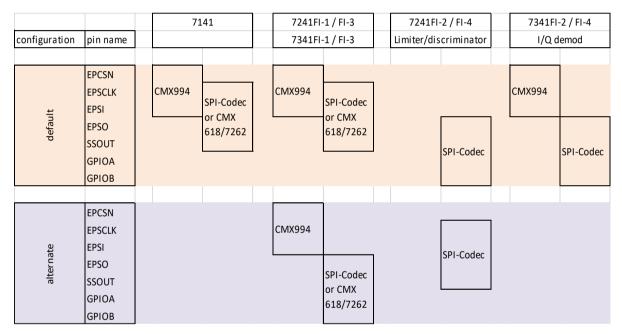

R101	100k $Ω$	C200	100pF	D400	MMBD1503A
R200 to R207	100k $Ω$	C201	100pF	U400	e.g. LMV931MG
R450	$22k\Omega$	C400	100nF	U500	e.g. SN74AHC1G04DRL
R451	$1M\Omega$	C451	1nF		
R500	100k $Ω$	C452	100nF		
		C500	1nF		

Table 3 Recommended External Components when using CMX994

4.4 Serial Port Interfaces

Two serial ports are available on the device to interface to a CMX994 and provide an audio SPI-codec interface. On the 7241FI-1 and 7241FI-3 these can be multiplexed together (with separate CSN signals) or entirely separate, whilst on the 7241/7341FI-2 and 7241/7341FI-4 they must be kept separate. Further information is available in sections 5.6.1 and 5.6.2.

Table 4 shows the options available and includes the CMX7141 to show where backwards compatibility is feasible.

Table 4 Serial Port Assignments

4.5 RESET Pin

This pin (pin 7) provides a dedicated reset function when connected to a suitable host microprocessor. To use reset the pin must be held high for a minimum of 100ns and then released. When the state of reset changes from 1 to 0, the same effect as a power-on reset is achieved.

5 General Description

5.1 7241/7341FI-4 Features

The 7241/7341FI-4.x Function Image™ is intended for use in half duplex digital APCO P25 equipment using C4FM modulation at 9.6kbps in 12.5kHz channels, and analogue FM using 12.5/25kHz channels. Analogue and Digital modes may be enabled simultaneously, allowing automatic detection of the signal type on the RF channel. A flexible power control facility allows the device to be placed in its optimum powersave mode when not actively processing signals.

The device includes a crystal clock generator, with buffered output, to provide a common system clock if required. A block diagram of the device is shown in Figure 1. The signal processing blocks can be routed from any of the three DISC/ALT/MIC input pins.

5.2 Digital Features

Much of the APCO P25 standard Air Interface physical layer protocol is embedded in the 7241/7341FI-4.x Function Image™ operation namely:

- C4FM modulation and demodulation
- Bit and symbol definition
- Frequency and symbol synchronisation
- Transmission burst building and splitting

5.3 Analogue Features

The device provides full audio/voice processing to suit the requirements of EN 300 086 and TIA 603D as well as comprehensive signalling to suit professional radio environments:

- Selectable pre-emphasis and de-emphasis
- Selectable voice compander
- Selectable frequency inversion scrambling
- Tx limiter and splatter filter
- Mic AGC
- Selectable sub-audio rejection filter
- CTCSS and DCS generator and decoder (including phase reversal detection)
- Support for external CTCSS/DCS generation and decoding with selectable filters
- 1200/2400 bps FFSK modem for MPT1327
- ADSW and CCSW reporting in MPT1327 mode
- 16-tone Selcall generator and decoder
- DTMF generator and decoder
- Tone generator

5.4 Auxiliary Functions

- Automatic Tx sequencer simplifies host control
- RAMDAC operation
- TXENA and RXENA hardware signals
- Two-point or I/Q modulation outputs
- Hard or soft data output options
- Two programmable system clock outputs
- Two auxiliary ADCs with four selectable external input paths
- Four auxiliary DACs, one with built-in programmable RAMDAC

5.5 Interface

- Optimised C-BUS (4-wire, high-speed synchronous serial command/data bus) interface to host for control and data transfer
- Open drain IRQ to host
- Auxiliary SPI/C-BUS interface to CMX994 with pass-through mode from host
- Auxiliary SPI-Codec bus interface for PCM speech codec to support third-party vocoders, e.g. IMBE
- Two GPIO pins
- C-BUS (host) boot mode.

5.6 System Design

5.6.1 General

The device can support two RF receiver architectures:

- Limiter/Discriminator or
- I/Q using the CMX994 Direct Conversion Receiver

The configuration of the auxiliary SPI/C-BUS port is controlled by the Program Register P6.1: b3-0. In SPI-Codec mode 16-bit PCM audio samples are transferred at 8ksps. When this mode is selected:

in Tx: the MIC input should be routed from MIC to Input1. The input signal is lowpass filtered, converted to 16-bit linear PCM at 8ksps and then output on the EPSI pin of the SPI-Codec port for the external vocoder to process.

in Rx: the AUDIO output should be routed from Output1. 16-bit linear PCM samples are read from the EPSO pin of the SPI-Codec port, then filtered and output via the Audio Output Attenuator. This mode can also be used for voice annunciations/warnings etc.

5.6.2 Third-party Vocoder Support

It is possible to use a third-party vocoder by routing all payload data (including voice traffic channel data) through the main C-BUS to the host. The host can then transfer it to/from the third party vocoder over a suitable port supported by the chosen vocoder. Typically these vocoders do not include audio Digital-to-Analogue and Analogue-to-Digital converters, so the device can be configured to use the auxiliary C-BUS as an SPI interface and use its built-in DAC/ADCs as audio converters to accept or deliver PCM audio samples. This architecture is shown in Figure 8 and Figure 9. See also section 6.4. Note that the vocoder functionality could be provided by the host micro in this mode.

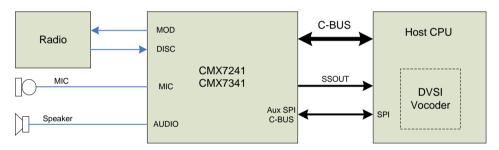


Figure 8 DVSI Vocoder Connection

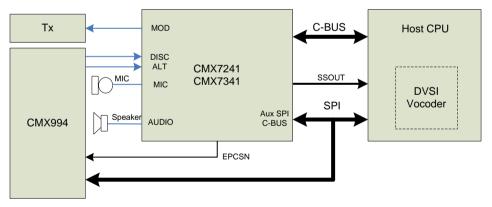


Figure 9 CMX994 and DVSI Connection

5.6.3 Data Transfer

When transmitting, an initial block of payload or control channel data will need to be loaded from the host into the C-BUS Tx FIFO. The device can then transmit that data while at the same time loading in the following data blocks from the host or vocoder.

When receiving, the host needs to consider that when a signal is received over the air there will be a processing delay while the device filters and demodulates the output data before presenting it to the host or vocoder. For best performance, voice payload data can be output in soft-decision (4-bit log-likelihood ratio) format compatible with third-party vocoders, although this mode increases the data transfer rate over C-BUS by a factor of four.

5.6.4 CMX994 Connection (I/Q Mode)

The CMX994 can be connected via the C-BUS connection in place of the serial memory (Table 5).. This allows the CMX994 to be used along with a DVSI vocoder or other third party vocoder.

CMX7241/7341 Pin	CMX994 Pin
EPCSN	CSN
EPSI	CDATA
EPSCLK	SCLK
No connection	RDATA

Table 5 CMX994 Connections

The operation of the CMX994 is generally automatic, however specific data may be written to CMX994 registers using the pass-through mode available using register \$C8. For example if the CMX994 PLL and VCO are used in the radio design then it is necessary to programme the appropriate frequency data to the CMX994 PLL-M Divider, PLL N-Divider and VCO Control registers using the pass-through mode before attempting reception.

The CMX994A/CMX994E devices are pin compatible with CMX994 and may be used instead. In order to make use of the advanced features Program Block P6.2 should be set appropriately.

CMX994 Rx Control: \$12

Bit:	7	6	5	4	3	2	1	0
	Mix Pwr	IQ Pwr	LNA Pwr	ACR Flt2	ACR Flt1	DC Range	DIV2	DIV1

CMX994 Rx Offset: \$13

Bit:	7	6	5	4	3	2	1	0
	QDC3	QDC2	QDC1	QDC0	IDC3	IDC2	IDC1	IDC0

CMX994 Rx Gain: \$16

Bit:	7	6	5	4	3	2	1	0
	GS1	GS0	LNA Gain2	LNA Gain1	LNA Z ₀	G2	G1	G0

Yellow indicates CMX994 C-BUS bit fields that are controlled by 7x41 Fl. All other registers and bit fields should be set up appropriately by the host using the pass-through write mode.

5.6.5 Hardware AGC – AuxADC1 Connection

In I/Q mode the AuxADC1 input can be used to improve the adjacent/alternate channel rejection with the addition of suitable external components (shown in Figure 6). This function provides a broadband signal detector which is used in the AGC process. This is required to prevent the DISC/ALT ADC inputs limiting internally in the presence of strong alternate channel signals, which are attenuated by the inherent filtering of the ADC.

This functionality is enabled by setting:

- Program Block P6.0:b3=1 (enable hardware AGC)
- \$C0:b6 = 1 (enable BIAS)
- \$93 = \$xx3C (AuxADC1 Enabled, averaging = 3, Routed from AuxADC input 1)
- \$95 = \$0185 (hi threshold)
- \$94 = \$0180 (lo threshold)

Note that threshold levels may need adjustment to suit particular hardware implementations.

5.6.6 RSSI Measurement (I/Q Mode)

In I/Q mode the RSSI is calculated from the signal levels present at the I and Q inputs and the AGC levels currently in use. Figure 10 shows a typical response.

Figure 10 RSSI in I/Q Mode

5.6.7 RSSI Measurement (LD mode)

The AuxADC provided by the device can be used to detect the Squelch or RSSI signal from the RF section while the device is in Rx or Idle mode. This allows a significant degree of powersaving within the device and avoids the need to wake the host up unnecessarily. The host-programmable AuxADC thresholds allow for user selection of squelch threshold settings.

5.7 C4FM Modem

This modem can run at 9.6 kbps occupying a 12.5 kHz bandwidth RF channel. It has been designed such that, when combined with suitable RF, host controller, Vocoder and appropriate control software, it meets the requirements of the APCO P25 standard. See https://www.apcointl.org/ for details of the standard.

5.7.1 Modulation

The C4FM modulation scheme operates in a 12.5 kHz channel bandwidth an over-air bit rate of 9.6 kbps (4.8 ksymbols/s). RC filters are implemented in Tx with a filter 'alpha' of 0.2. Figure 13 shows the basic parameters of the C4FM modulation, symbol mapping and filtering requirements. Figure 11 and Figure 12 show a transmitted PRBS waveform, as recorded on a spectrum analyser in 36kHz span and zero-span mode, having been two-point modulated using a suitable RF transmitter.

To follow

Figure 11 C4FM PRBS Waveform (Eye Diagram)

To follow

Figure 12 C4FM Modulation Performance

Inputs to the 4-level encoder are converted to symbol values as follows:

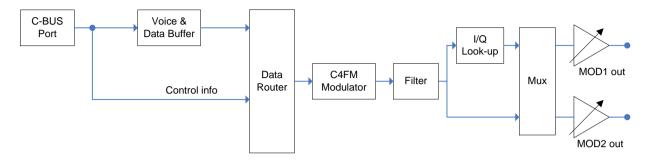
Di bit	Symbol	Deviation
01	+3	+1.8kHz
00	+1	+0.6kHz
10	-1	-0.6kHz
00	-3	-1.8kHz

Table 6 Modulation Deviation

The symbol input to the Raised Cosine filter is a series of digital "impulses" as described in TIA/EIA-102.BAA paragraph 9.3.

The Raised Cosine filter has alpha = 0.2 and has a frequency response as follows:

$$H(f) = \begin{cases} 1 & \text{for } f < 1920Hz \\ 0.5 + 0.5 \bullet \cos\left(2 \bullet \pi \bullet \frac{f}{1920}\right) & \text{for } 1920 < f < 2880Hz \\ 0 & \text{for } f > 2880Hz \end{cases}$$


The shaping filter has a linear phase frequency response as follows:

$$\begin{cases} \frac{\pi \cdot \frac{f}{4800}}{\sin\left(\pi \cdot \frac{f}{4800}\right)} & \text{for } |f| < 2880Hz \\ \frac{\pi \cdot \frac{f}{4800}}{\sin\left(\pi \cdot \frac{f}{4800}\right)} & \text{for } 2880 \le |f| \le 3500Hz \\ 0 & \text{for } |f| > 3500Hz \end{cases}$$

Figure 13 C4FM Modulation Characteristics

5.7.2 Internal Data Processing

The device operates as a half-duplex device, either receiving signals from the RF circuits in Rx mode, or sourcing signals to the RF circuits in Tx mode. It also has a low power Idle mode to support battery saving protocols. The internal data processing blocks for Tx and Rx modes are illustrated in Figure 14.

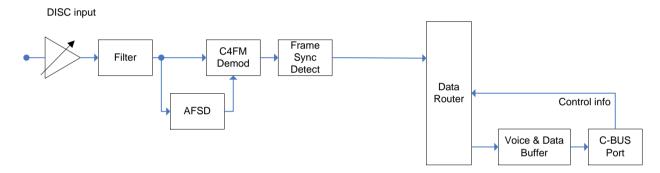


Figure 14 Internal C4FM Data Processing Blocks

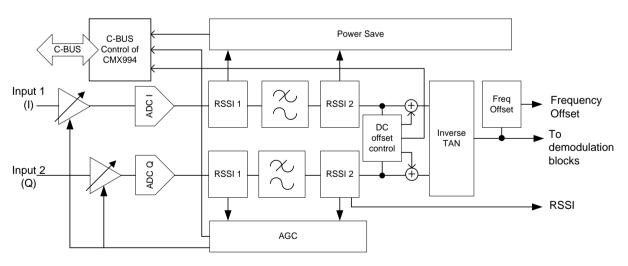


Figure 15 Additional Internal Data Processing in I/Q Mode

5.7.3 Frame Sync Detection and Demodulation

The analogue signal from the receiver may be from either a CMX994 I/Q interface or a limiter/discriminator (LD) output. The signal(s) from the RF section should be applied to the CMX7241/7341 input(s) (normally the DISC input for LD Rx and DISC and ALT inputs for I/Q Rx). The signals can be adjusted to the correct level either by selection of the feedback

resistor(s) or using the CMX7241/7341 Input Gain settings. In LD mode the signal is filtered using an Integrate-and-Dump filter matching the filters applied in the transmitter, then passed to the AFSD (Automated Frame Sync Detector) block which extracts symbol and frame synchronisation. During this process the C4FM demodulator and the data-processing sections that follow are dormant to minimise power consumption. When frame synchronisation has been achieved, the AFSD section is powered down and timing and symbol-level information is passed to the C4FM demodulator, which starts decoding the subsequent data bits.

In I/Q mode filtering is applied to the input signals and dc offsets are removed before an inverse tan function performs the FM demodulation function. The output of this stage has an offset depending on the frequency error of the received signal compared to the nominal frequency of the receiver. This offset is removed before filtering, after which the signal chain is then the same as the LD case. In I/Q mode the CMX7241/7341 provides measurements of frequency error and RSSI (which are not available in LD mode).

A C4FM burst begins with an optional preamble sequence followed by a 48-bit frame sync. The CMX7241/7341 uses the frame sync to detect the start of a transmission. Frame sync detects are reported with an FS Detect IRQ and a code in the C4FM Modem Status register (\$C9). When frame synchronisation has been achieved, the C4FM demodulator is enabled, frame sync detection is switched off and subsequent frame sync sequences embedded in the received frames are not reported.

5.7.4 Voice Coding

The CMX7241/7341 can support any third-party vocoder by routing voice payload data over the main C-BUS interface and through the host. In this mode, all vocoder control and data transfers must be managed by the host. Voice data transferred to the host may use either hard decision bits or soft decision (4-bit log-likelihood ratio) format. Using soft decision format increases the required data transfer rate over C-BUS by a factor of four.

5.7.5 Radio Performance Requirements

For optimum performance, the signal should not be significantly degraded by filters that are excessively narrow and/or cause significant group delay distortion. Care should be taken in interfacing the device to the radio circuits to maintain the frequency and phase response (both low and high end), in order to achieve optimum performance. Test modes are provided to assist in both the initial design and production set-up procedures. Further information and application notes can be found at http://www.cmlmicro.com.

5.8 Audio/Voice Functions

5.8.1 Microphone

A microphone may be directly connected to the MIC input, which is configured as an op amp with the positive input tied to VBIAS. This allows the gain and frequency response to be set by selecting appropriate values of C15, C16 and R9, R10. The device includes a programmable gain stage which can either be set by the host by writing to the Analogue Output Gain register (\$B0) or can be left for the device to control as part of the Voice AGC functionality.

5.8.2 Speaker

A speaker amplifier may be connected to the AUDIO output. The signal level on this pin can be controlled using the Analogue Output Gain Register (\$B0).

5.8.3 Modulation

Two separate modulation outputs are provided (MOD1, MOD2) with independent level controls to facilitate 2-point modulation systems. Alternatively, the same outputs may be configured to drive an I/Q modulator. In I/Q mode the Analogue FM modulation level is set to 2.5kHz in order to be compatible with 12.5kHz channel operation. I/Q Tx mode is not suitable for 25kHz channel operation.

5.8.4 Audio / Voice processing

All the necessary processing blocks to support analogue FM voice for 12.5 or 25kHz channel operation are provided to support ETSI 300 086 and TIA 603 compatible systems. This includes:

- 300 Hz HPF to reject sub-audible signalling
- Pre emphasis and de-emphasis
- Channel filtering for 12.5 or 25kHz channels
- Programmable Limiter (works in concert with the Voice AGC)

In addition, frequency inversion voice scrambler and a voice compander are also provided.

The analogue signal levels must be set so as not to overload the internal processing blocks. In particular, pre-emphasis and de-emphasis processing will boost signals by up to 10dB, depending on their frequency. Threshold levels for the Voice AGC and Tx Limiter functions are host programmable.

5.8.5 Sub-Audio Signalling

A 51-tone CTCSS and 83-code DCS encoder / decoder is provided which meets the requirements of TIA 603. Reverse tone burst and Squelch Tail Elimination are supported.

5.8.6 In-band Signalling

- A fully flexible Selcall Tone encoder/decoder with host programmable tones is provided. By default the CCIR tone set is enabled
- A 1200/2400 bps FFSK modem that meets the requirements of MPT1327 is available. This provides simultaneous detection of up to four different sync sequences, all of which are host programmable
- A standard DTMF generator/decoder is provided
- A general purpose audio tone generator is also available for generating "ring-tones", confidence tones or key beeps etc.

Note that enabling more than one in-band signalling format simultaneously may lead to false detects on any one of them, and increase power consumption.

© 2017 CML Microsystems Plc Page 26 D/7241_7341_FI4.x/1

6 Detailed Descriptions

6.1 Xtal Frequency

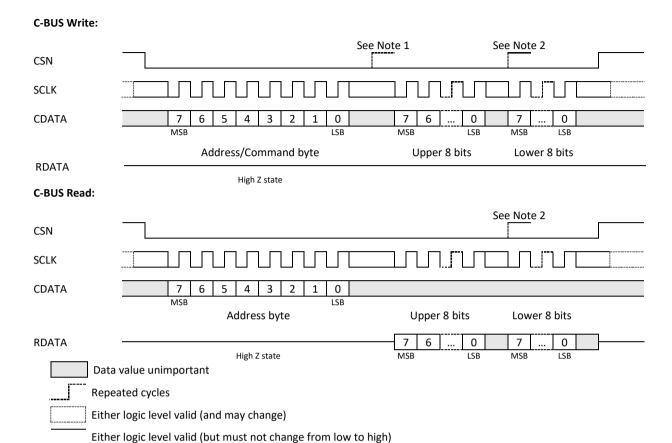
The CMX7241/7341 is designed to work with an external frequency source of 19.2 MHz. For other values, contact CML Customer support.

P	rogra	External Frequency Source (MHz)	
			19.2
P3.14	ldle	GP timer	\$0018
P3.15	Þ	VCO output and AUX clk divide	\$0099
P3.16		MainCLK Init	\$4F51
P3.17		MainCLK Lock Time	\$0267
P3.18		MainCLK0	\$43B1
P3.19	Rx or Tx	MainCLK1	\$0019
P3.20		MainCLK2	\$0040
P3.21		VCO output and AUX clk divide	\$0140
P3.22		Internal ADC/DAC clk divide	\$0008

Table 7 Xtal/Clock Frequency Settings for Program Block 3

6.2 Host Interface

A serial data interface (C-BUS) is used for command, status and data transfers between the CMX7241/7341 and the host μ C; this interface is compatible with microwire and SPI. Interrupt signals notify the host μ C when a change in status has occurred and the μ C should read the status register across the C-BUS and respond accordingly. Interrupts only occur if the appropriate mask bit has been set. See section 6.5.2.

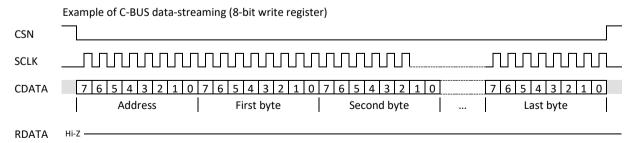

The CMX7241/7341 will monitor the state of the C-BUS registers that the host has written-to every 250 μ s (the C-BUS latency period) hence it is not advisable for the host to make successive writes to the same C-BUS register within this period.

6.2.1 C-BUS Operation

This block provides for the transfer of data and control or status information between the CMX7241/7341's internal registers and the host μ C over the C-BUS serial interface. Each transaction consists of a single address byte sent from the μ C which may be followed by one or more data byte(s) sent from the μ C to be written into one of the CMX7241/7341's Write Only Registers, or one or more data byte(s) read out from one of the CMX7241/7341's Read Only Registers, as shown in Figure 16.

Data sent from the μ C on the CDATA (Command Data) line is clocked into the CMX7241/7341 on the rising edge of the SCLK (Serial Clock) input. RDATA (Reply Data) sent from the CMX7241/7341 to the μ C is valid when the SCLK is high. The CSN line must be held low during a data transfer and kept high between transfers. The C-BUS interface is compatible with most common μ C serial interfaces and may also be easily implemented with general purpose μ C I/O pins controlled by a simple software routine.

The number of data bytes following an address byte is dependent on the value of the Address byte. The most significant bit of the address or data is sent first. For detailed timings see section 7.2. Note that, due to internal timing constraints, there may be a delay of up to 250 μ s between the end of a C-BUS write operation and the device reading the data from its internal register.


Figure 16 C-BUS Transactions

Notes:

- 1. For Command byte transfers only the first 8 bits are transferred (\$01 = Reset).
- 2. For single byte data transfers only the first 8 bits of the data are transferred.
- 3. The CDATA and RDATA lines are never active at the same time. The Address byte determines the data direction for each C-BUS transfer.
- 4. The SCLK input can be high or low at the start and end of each C-BUS transaction.
- 5. The gaps shown between each byte on the CDATA and RDATA lines in the above diagram are optional, the host may insert gaps or concatenate the data as required.

6.2.2 C-BUS FIFO operation

The 7241/7341 implements Rx and Tx FIFOs to buffer the incoming and outgoing data. To maximise data bandwidth across the C-BUS interface, the FIFO registers are also capable of data-streaming operation. This allows a single address byte to be followed by the transfer of multiple read or write data words, all within the same C-BUS transaction. This can significantly increase the transfer rate of large data blocks, as shown in Figure 17.

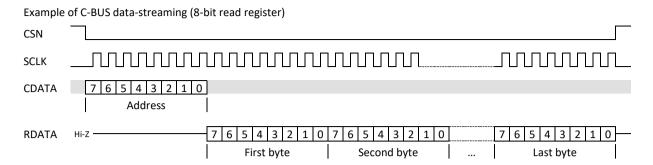


Figure 17 C-BUS Data-Streaming Operation

The Tx and Rx FIFOs are implemented as two separate 256 x 16-bit arrays. Each row of the arrays can be accessed as a 16-bit word (\$79 and \$7D) or an 8-bit byte (\$78 and \$7C - which accesses the lower byte of each row). The number of rows of each array currently in use can be read using the \$7B and \$7F registers.

C-BUS Address	Function	C-BUS Address	Function
\$78 (write)	Tx FIFO data byte	\$7C	Rx FIFO data byte
\$79 (write)	Tx FIFO data word	\$7D	Rx FIFO data word
\$7B (read)	Tx FIFO level	\$7F	Rx FIFO Level

Table 8 C-BUS FIFO Registers

The Tx FIFO can be flushed by putting the Tx modem into Tx Off (powersave) (\$C1=\$xx0x).

6.3 Function Image™ Loading

The Function Image™ (FI), which defines the operational capabilities of the device, may be obtained from the CML Technical Portal, following registration. This is in the form of a 'C' header file which can be included into the host controller software. The maximum possible size of Function ImageTM is 96 kbytes, although a typical FI will be less than this. Note that the BOOTEN pins are only read at power-on or following a C-BUS General Reset or a reset via the RESET pin and must remain stable throughout the FI loading process. Once the FI load has completed, the BOOTEN pins are ignored by the CMX7241/7341 until the next power-up or C-BUS General Reset.

The BOOTEN pins are both fitted with internal low current pull-down devices.

For C-BUS load operation, both pins should be pulled high by connecting them to DVDD either directly or via a 220k resistor (see Figure 18).

Once the FI has been loaded, the CMX7241/7341 will report the following information:

- \$C5 = Product Ident Code (\$7241 or \$7341)
- \$C9 = FI version code (1xxx)
- \$A9, \$AA = Block 2 Checksum
- \$B8, \$B9 = Block 1 Checksum

The host should verify the checksum values with those published with the Function Image file downloaded from the CML Technical Portal.

The device waits for the host to load the 32-bit Device Activation Code through C-BUS register \$C8. Once activated, the device initialises fully, enters idle mode and becomes ready for use, and the Programming flag (bit 0 of the Status register) will be set.

Once the FI has been activated, the checksum, product identification and version code registers are cleared and these values are no longer available. If an invalid activation code is loaded, the device will report the value \$DEAD in register \$A9 and must be reset via the dedicated RESET pin (if used) or power-cycled before an attempt is made to re-load the FI and re-activate.

Both the Device Activation Code and the checksum values are available from the CML Technical Portal.

	BOOTEN2	BOOTEN1	Notes:
C-BUS Host load	1	1	FIFO mode (or single word mode)
Multi-Serial Memory load	1	0	Flexible address mode
Serial Memory load	0	1	Compatible with CMX7141
No FI load	0	0	

Note: Following a reset, the contents of the device should be verified using the CRC check facility, and re-loaded if required.

Table 9 BOOTEN Pin States

6.3.1 FI Loading from Host Controller

The Function Image™ can be included with the host controller software for download into the CMX7241/7341 at power-up over the C-BUS interface. This is done by writing the FI data into the Tx FIFO Data register (\$79) which supports streaming operation. The BOOTEN1/2 pins must first be set to the C-BUS load configuration and the device then powered up or Reset before the FI data is sent over C-BUS.

When using the recommended 19.2 MHz clock source for XTAL/CLK input, the device can accommodate the host continuously streaming data to the Tx FIFO at the maximum SCLK rate of 10 MHz, therefore it is not necessary to monitor the FIFO level registers during this operation. FI download time is limited only by the clock frequency of the C-BUS. With a 10 MHz SCLK it should take less than 250 ms to complete even when loading the largest possible Function Image™.

The CMX7241/7341 memory can be protected against brownout or other forms of corruption. This protection is applied automatically in the 7241/7341 Fls.

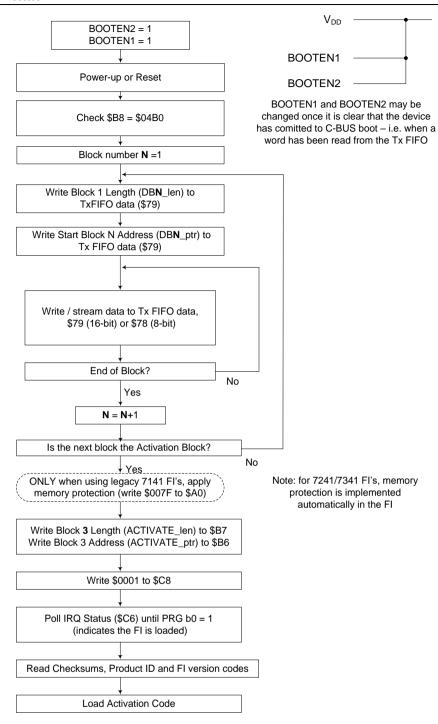


Figure 18 FI Loading from Host

If the main clock frequency (at the XTAL/CLK pin) is slower than the C-BUS clock then the host will need to manually increase the internal MainCLK speed (contact CML Customer Support for details). The device does not take any action until BOTH length and address have been written to the FIFO, so writing the length and then polling for 'FIFO level = 0' will NOT work.

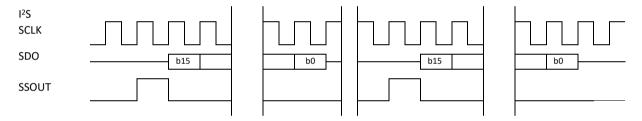
Support for the legacy mode, as used in the CMX7141 and CMX7041 series, is provided, but not recommended. Contact CML Customer Support for details.

Block 3 (Activate) may also be loaded using the Tx FIFO mechanism. However, in this case, the PRG flag will not be set when the operation has completed, so the host must implement a fixed delay or poll the \$C5 register until the Device Ident Code appears, before the checksum values can be read.

6.4 External Codec Support

6.4.1 DVSI Vocoder Interface

If the DVSI vocoder (or other third-party vocoder) is used all radio channel data will need to be transferred over the main C-BUS through the host. In this case the SPI-Codec ENA bit (\$A0 bit 0) should be set to 1.


The connections for the DVSI vocoder (or other third-party vocoder) to enable it to use the CMX7241/7341 as the PCM audio codec are shown in Table 10. The alternate configuration is enabled by setting P6.1:b15.

CMX7241 (P6.1:b15 = 0)	CMX7341 (P6.1:b15 = 1)	AMBE3000 pin
SSOUT	SSOUT	SPI_STE
EPSI	GPIOA	SPI_RX_DATA
EPSO	EPSO	SPI_TX_DATA
EPSCLK	GPIOB	SPI_CLK and SPI_CLK_IN.

Table 10 DVSI Vocoder Connections

6.4.2 Support for I2S Mode

The device can support I²S interfaces in mono, 16-bit mode only, for transmitting and receiving audio codec data using the SPI bus. This mode is selected in the programming register (see section 8.3.7). The diagram below shows typical transmit waveforms.

6.5 Device Control

The CMX7241/7341 can be set into the relevant mode to suit its environment. These modes are described in the following sections and are programmed over the C-BUS: either directly to operational registers or, for parameters that are not likely to change during operation, via the Programming register (\$C8). For basic operation:

- (1) Enable the relevant hardware sections via the Power Down Control register
- (2) Set the appropriate Program registers to the desired state (especially the Protocol Select field)
- (3) Set the appropriate mode registers to the desired state
- (4) Select the required signal routing and gain
- (5) Use the Mode Control register to place the device into Rx or Tx mode.

To conserve power when the device is not actively processing a signal, place the device into Idle mode. Additional powersaving can be achieved by disabling any unused hardware blocks, however, care must be taken not to disturb any sections that are automatically controlled. Note that the BIAS block must be enabled to allow any of the Input or output blocks to function. See:

- Power Down Control \$C0 write
- Mode Control \$C1 write
- C4FM Modem Configuration \$A1 write

6.5.1 General Notes

In normal operation, the most significant registers, in addition to the TxData and RxData FIFOs, are:

- Mode Control \$C1 write
- IRQ Status \$C6 read

- Analogue Output Gain \$B0 write
- Input Gain and Signal Routing \$B1 write
- Analogue Mode \$C2 write
- Analogue Control \$C3 write.

Setting the Mode register to either Rx or Tx will automatically increase the internal clock speed to its operational speed. Setting the Mode register to Idle will automatically return the internal clock to a lower (powersaving) speed. To access the Program Blocks (through the Programming register, \$C8) the device MUST be in Idle mode.

Under normal circumstances the CMX7241/7341 manages the Main Clock Control automatically, using the default values loaded in Program Block 3.

6.5.2 Interrupt Operation

The CMX7241/7341 will issue an interrupt on the IRQN line when the IRQ bit (bit 15) of the IRQ Status register and the IRQ Mask bit (bit 15) are both set to 1. The IRQ bit is set when the state of the interrupt flag bits in the IRQ Status register change from 0 to 1 and the corresponding mask bit(s) in the Interrupt Mask register is(are) set. Enabling an interrupt by setting a mask bit $(0\rightarrow1)$ after the corresponding IRQ Status register bit has already been set to 1 will also cause the IRQ bit to be set.

All interrupt flag bits in the IRQ Status register, except the Programming Flag (bit 0), are cleared and the interrupt request is cleared following the command/address phase of a C-BUS read of the IRQ Status register. The Programming Flag bit is set to 1 only when it is permissible to write a new word to the Programming register.

See:

- IRQ Status \$C6 read
- Interrupt Mask \$CE write.

Continuous polling of the Status register (\$C6) is not recommended due to both the increase in response time, host loading and potential digital noise generation due to bus activity. If the host cannot support a fully IRQ driven interface then it should route the IRQ signal to a host I/O pin and poll this pin instead.

6.5.3 Signal Routing

The CMX7241/7341 offers a flexible routing architecture, with three signal inputs, a choice of two modulator configurations (to suit two-point modulation or I/Q schemes) and a single audio output. See:

- Input Gain and Signal Routing \$B1 write
- Mode Control \$C1 write

The analogue gain/attenuation of each input and output can be set individually, with additional Fine Attenuation control available via the Programming registers in the CMX7241/7341. The Mic. and Speaker gains are set by the Analogue Control - \$C3 write register of the CMX7241/7341. See:

- Analogue Output Gain \$B0 write (MOD1 and 2)
- Input Gain and Signal Routing \$B1 write (DISC input, MOD1 and 2)
- Analogue Control \$C3 write (Mic. and Speaker).

In common with other FIs developed for the CMX7241/7341, this device is equipped with two signal processing paths. Input 1 should be routed to any of the three input sources (ALT, DISC or MIC) which should be connected to the radio's discriminator output. The internal signals Output 1 and Output 2 are used to provide either two-point or I/Q signals and should be routed to the MOD1 and MOD2 pins as required.

6.5.4 Mode Control

The CMX7241/7341 operates in one of these operational modes:

- Idle
- Rx
- Tx
- Rx with CMX994 I/Q Cal.
- Rx with CMX994 Powersave

At power-on or following a Reset, the device will automatically enter Idle mode, which allows maximum powersaving whilst still retaining the capability of monitoring the AuxADC inputs (if enabled). It is only possible to write to the Programming register whilst in Idle mode. See:

• Mode Control - \$C1 write.

GPIO1 and GPIO2 pins (RXENA and TXENA) reflect bits 0 and 1 of the Mode Control register, as shown in Table 11. These can be used to drive external hardware without the host having to intervene. There are also two additional GPIO pins that are programmable under host control.

Mode Control	Modem Mode		nnected to /dd	R20,R21connected to DVss	
(\$C1) b3-0		TXENA	RXENA	TXENA	RXENA
0000	Idle – Low Power Mode	1	1	0	0
0001	Rx	1	0	0	1
0010	Tx	0	1	1	0
0011	reserved	х	х	х	х
0100	reserved	1	1	0	0
0101	Rx with CMX994 I/Q Cal.(I/Q mode only)	1	0	0	1
1001	Rx with Powersave (I/Q mode only)	1	0	1	0
others	reserved	х	х	х	х

Table 11 Device Mode Selection

Mode Control (\$C1) b7-4	Rx	Тх
0000	Rx Idle	Tx Idle
0001	reserved	reserved
0010	Rx C4FM Raw	Tx C4FM Raw
0011	Rx C4FM EYE	Tx C4FM PRBS
0100	Rx Pass-through Mode	Tx C4FM Preamble
0101	reserved	Tx C4FM Mod Set-up
0110	Sync	Test
0111	Reset/Abort	Reset/Abort
1xxx	reserved	reserved

Table 12 C4FM Modem Control Selection

b15	b14	b13	b12	b11	b10	b9	b8
Voice	Tone	Sub-Audio	res	Scrambler	Selcall	DTMF	FFSK

Table 13 Analogue Mode Selection

In Rx, both Analogue and Digital modes maybe selected at the same time, however, to achieve best performance and power consumption, once an activity in a particular mode has been detected (as indicated by the IRQ, Digital and Analogue status registers, \$C6, \$C9, \$9B, and \$CC), the others should be disabled. Detection of a C4FM frame sync will automatically disable analogue functionality, and inband or subaudio detections will automatically disable C4FM digital functionality. In Tx, only one mode should be selected at any one time, with the exception of Sub-Audio, which may be enabled in conjunction with any other analogue mode.

The Modem Mode bits and the Mode Control bits should be set together in the same C-BUS write.

6.5.5 Tx Mode C4FM Raw

In Tx raw mode operation (\$C1, Mode Control = \$0022), the host should write the initial data block to the C-BUS TxFIFO register and set the Modem Mode to Raw and the Control bits to Tx. The preamble and frame sync are transmitted automatically, followed by the data. As soon as the preamble and framesync have been modulated, the 'Data Ready' IRQ is asserted. This can be used as a trigger to load the next block, though data can be loaded at any time provided that there is enough space in the FIFO. The modem will automatically insert status symbols every 36 symbols (72 bits), with the value of the status symbol taken from CBUS register \$CB

Each block should be started by writing a 16-bit word to the CBUS Tx FIFO Data Word register (8.1.5). This word should contain the number of valid bits in the block in the lower byte. Bit 15 should be set to 1 if this is the last block, and cleared to zero otherwise. Setting b15 will automatically terminate the transmission once the final symbol of the data has been transmitted, and inhibit any "Tx Underrun" indication. Following this initial header word, data should be written into either the TxFIFO Data Byte register (8.1.4) or the TxFIFO Data Word register, using the lower byte for data, and the upper byte cleared to all zeros.

After the last data bit has left the modulator a "TxDone" IRQ will be asserted. At this point it is now safe for the host to change the Modem Control and Modem Mode to IDLE (\$C1, Modem Control = \$0000) and turn the RF transmitter off.

6.5.6 Tx Mode PRBS

In PRBS mode (\$C1, Mode Control = \$0032) the preamble and frame sync are transmitted automatically followed by a PRBS pattern conforming to ITU-T 0.153 (para. 2.1) giving a 511-bit repeating sequence.

6.5.7 Tx Mode Preamble

In Preamble mode (\$C1, Mode Control = \$0042) the preamble sequence [+3 +3 -3 -3] is sent continually. This can be used to set up and adjust the RF hardware.

6.5.8 Tx Mode Mod Set-up

In Mod Set-up mode (\$C1 = \$0052) the output depends on the selected Tx modulation type. In two-point mode, a repeating sequence of eight +3 symbols followed by eight -3 symbols is sent, and in I/Q mode a continuous sequence of +3 symbols is sent. This can be used to set up and adjust the RF hardware.

6.5.9 Tx Mode Test

In Test mode (\$C1 = \$0062), simple test waveforms are generated by loading the Tx FIFO with the required pattern. The first byte loaded should contain the number of bytes in the pattern. The data must be pre-loaded into the FIFO before the mode register is written. The pattern will be transmitted continuously until the mode register is re-written.

6.5.10 Tx Sequencer

The Tx Sequencer provides an automated way of executing a sequence of actions, thus reducing timing constraints placed on the host. It is controlled by setting b15 in the C4FM Modem Configuration register (\$A1) to 1. If enabled, it will automatically start executing its sequence of transmit actions when the CMX7241/7341 is placed in Tx mode. The timing values for each action can be set in P3.0 to P3.12 and are defined in increments of 250µs. The RAMDAC will ramp (up and down) over a period defined by the configuration in P3.13 (RAMDAC scan time configuration).

For digital Tx modes the CMX7241/7341 will be prevented from modulating data until the Modulation Start Delay has elapsed. For analogue Tx modes the signal will initially be muted for this period, at which point any buffered FFSK data will begin to modulate. Tone generation will not be possible during this start delay time therefore tone generation commands should be delayed until the Modulation Start Delay timer has expired. Expiry of the timer is indicated by the raising of the Sequencer Event IRQ (\$C6:b2) and setting of the Sequencer Start event flag (b10) of the C4FM Modem Status register (\$C9).

The Tx Sequencer may also directly take control of the GPIOA and GPIOB signals if required – setting them high for the duration of the active mode. This is enabled by selecting the appropriate bit in P6.0:b13,12. The delay timers for controlling each GPIO signal transition are set individually.

In digital Tx modes the sequencer ends automatically with the detection of the end of data burst within the payload block. While in analogue Tx mode FFSK data will also automatically end the sequencer following detection of the last data to be transmitted. The Tx Sequencer can also be forced to execute the "end" actions by writing Tx Sequencer Release (\$B000) to AuxFunction Control (\$A8). This can be used to end the sequence when analogue Tx modes are used (without FFSK, for instance).

© 2017 CML Microsystems Plc Page 35 D/7241_7341_FI4.x/1

Following completion of the last sequencer action (TXENA inactive) the Sequencer Event IRQ is asserted with the Sequencer End event flag (b11) being set in the C4FM Modem Status register (\$C9) and the device is automatically returned to its previous mode.

It is important that the RAMDAC ramp down completes by the end of the sequencer event. This can be confirmed by also verifying that the Ramp flag (b12) of \$C9 - C4FM Modem Status is clear when the Sequencer (End) event IRQ is raised. This can be accomplished by either increasing the Tx ENA inactive delay timer or decreasing the RAMDAC scan time.

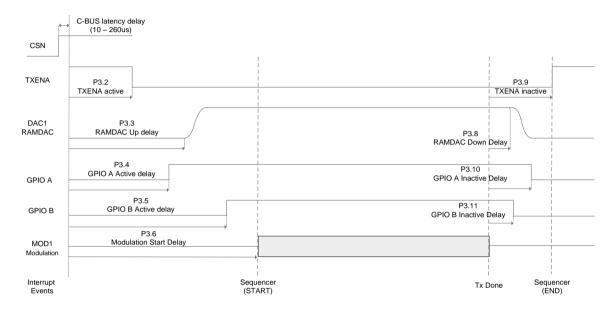


Figure 19 Tx Sequencer Delay Timers

6.5.11 Rx Mode Raw

In Rx Raw mode (\$C1, Mode Control = \$0021), once a valid Frame Sync has been detected, all following data received is loaded directly into the C-BUS RxFIFO (Note: the 48-bit framesync is NOT loaded into the FIFO). This continues until the host exits Rx Raw mode, even if there is no valid signal at the input. On exiting Rx Mode Raw, there may be a DataRdy IRQ pending which should be cleared by the host. Note that Raw Mode operation always requires the incoming data to be preceded with a valid Preamble and Frame Sync pattern in order to derive timing information for the demodulator. If 'soft' data mode has been selected, the payload data is encoded in 4-bit log-likelihood-ratio format. The DataReady Status bit will be set (triggering an IRQ, if enabled) after each 72 over air-bits have been received, corresponding to the status symbol bits being loaded into the Rx FIFO. The FIFO word which contains the status symbol will have the RSSI value in the upper byte. All other words have zero in the upper byte.

6.5.12 Rx Mode Eye

In Rx C4FM EYE mode (\$C1 = \$0031), the filtered received signal is output at the MOD1 pin as an 'eye' diagram for test and alignment purposes. A trigger pulse is output at the MOD2 pin to allow viewing on a suitable oscilloscope. The trigger pulse is generated directly from the receiver xtal source, not from the input signal.

6.5.13 Rx Pass-through Mode

Rx Pass-through mode (\$C1 = \$0041) is very similar to Rx Mode Eye as described in section 6.5.12. However the output at the MOD1 pin is the flat, unfiltered signal. A trigger pulse is output at the MOD2 pin to allow viewing on a suitable oscilloscope. The trigger pulse is generated directly from the receiver xtal source, not from the input signal.

© 2017 CML Microsystems Plc Page 36 D/7241_7341_FI4.x/1

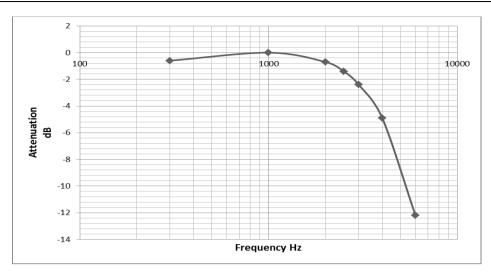


Figure 20 Frequency Response for Rx Pass-through Mode

6.5.14 Rx Mode with CMX994 AGC (I/Q Mode only)

By default, when receiving in I/Q Mode the device will control its internal analogue gain and the gain of the CMX994 in order to keep the received I/Q signals within an acceptable dynamic range. This AGC feature may be disabled using Program Block P6.0 (I/Q AGC function), in which case any setup that the host has made of the CMX994 will determine its gain, with the input gain of the device being controlled using the Input Gain and Signal Routing - \$B1 write register.

It is important to ensure that the dc offset on the I/Q signals is small, otherwise the AGC function will interpret the dc as a large received signal and never select maximum gain. This problem can be addressed by calibrating the CMX994 as described in section 6.5.15.

6.5.15 Rx Mode with CMX994 I/Q Cal (I/Q Mode only)

When receiving, the device will estimate and remove the dc error present in the I/Q signals from a CMX994 receiver. However, it is necessary to calibrate the CMX994 so that the magnitude of the dc offsets present is as small as possible. Selecting Rx mode with CMX994 I/Q Cal (\$C1, Mode Control b3-0 = \$5) causes the device to measure the dc offset on the DISC and ALT input pins and to control the CMX994 receiver to minimise the dc offsets. The device will then begin to receive normally – correcting the remaining dc offset internally.

Important note: when calibrating I/Q it is important that the I/Q signals are not swapped when interfacing to the CMX994. This can be corrected by using bits 2 to 5 of the Input Gain and Routing register (\$B1).

If the CMX994 is poorly calibrated, a loss of headroom when receiving signals will result. In extreme cases, when large dc offsets are amplified, the result can be big enough to prevent the AGC from reaching maximum gain as it interprets the dc offset itself as a large signal.

Selection of some CMX994 options such as low power, or phase correction in the case of a CMX994A/CMX994E, can change the I/Q dc position. For this reason the calibration should be executed with the desired CMX994 configuration already applied.

Having calibrated the CMX994, the value written to the CMX994 dc offset correction register is available to read using the Aux Data and Status (\$A9, \$AA) registers. This means that having calibrated the CMX994 on a receive channel the calibration result may be stored by the host microcontroller and restored at a later time.

The format of the DC offset correction register read back value differs slightly between a CMX994 and a CMX994A/CMX994E. When a CMX994A/CMX994E is connected (and configured as such) the calibration will be performed using the Extended Rx Offset Register (\$17). This is a 16-bit register with a greater range of offset values than available in the CMX994. Because the Aux ADC Data and Status registers (\$A9 and \$AA) only provide 12 available bits the field is compressed when read back during this mechanism. If the host microcontroller wishes to write the values to the CMX994A/CMX994E (via 994 pass-through mode) it must convert the format accordingly before writing to the CMX994A/CMX994E Extended Rx Offset Register (\$17).

For further details about the format of the I or Q correction values please refer to the CMX994/CMX994A/CMX994E Datasheet, available from the CML website.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0		O Cha	nnel Co	rrection	Value		0	0		I Cha	nnel Cor	rection	Value	

Figure 21 Format of CMX994A/E Extended Rx Offset register (\$17)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	1	1		Q Cha	nnel Co	rrection	Value			I Cha	nnel Co	rection \	Value	

Figure 22 Format of I/Q DC calibration reporting when CMX994A/CMX994E is selected

6.5.16 Rx Mode with CMX994 Powersave (I/Q mode only)

6.5.16.1 Overview

Significant power saving may be achieved by using the low-power features of the CMX994. These are controlled by the device automatically when powersave is enabled by selecting Rx mode with powersave (\$C1, Mode Control b3-0 = \$9). It will continue to powersave the CMX994 until a valid signal is detected. At this point a Powersave Exit IRQ will be raised and the power-saving state will be cleared. From this point the CMX994 will remain 'on', until the powersave mode is reapplied by rewriting to the Mode Control register again. The Mode Control register may also be re-written while the powersave is still active – this will have the effect of restarting the state machine from the beginning of the off time state. An overview of the powersave states can be seen in Figure 23.

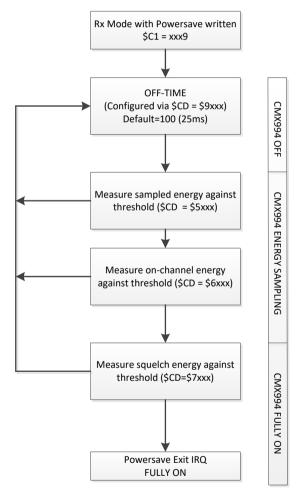


Figure 23 Powersave States

There are three possible power states for the CMX994 under power saving mode:

 Max saving – the device is in this state during the OFF-TIME period and saves the maximum amount of power. • Energy sampling – this state is used to sense energy present on the channel, using the minimum power required. It can be set to use less power than the normal 'on' state, depending on the type of CMX994 device connected, and configuration. For full details see section 6.5.16.2.

Normal 'on' – this state is entered into once the energy threshold tests have been met and squelch
calculations are required; it is the normal operating state for the CMX994 while receiving a signal and is
based on the CMX994 register values written by the host via pass-through mode.

6.5.16.2 CMX994 Powersave Configuration and Options

The powersave functions are compatible with three variants of the CMX994: standard CMX994, CMX994A and CMX994E. The CMX994A and CMX994E contain additional hardware options which can be used to achieve improved powersaving. For full details consult the CMX994/CMX994A/CMX994E datasheet. The device in use should be selected by writing the appropriate value to Programming Register P6.2 (see section 8.3.7).

The CMX994 may be configured to further optimise the savings available. The controls are divided into three areas:

- Static mode selection of the CMX994/CMX994A/CMX994E via pass-through mode
- Threshold and Off-Time selection via the Aux Config (\$CD) mechanism
- Configuration options in Program Block words 6.2 and 6.3

The static parameters which can affect current are listed below:

CMX994 Register / bit	Description	Notes
\$11: b4	Low Power	Available on CMX994/CMX994A/CMX994E
\$15: b1-0	Phase Correction Disable	Available on CMX994A/CMX994E only (for most applications these bits can be set to '11', saving approximately 15mA with no, or minimal, impact on system performance)
\$15: b15-14	Enhanced Mode	Available on CMX994E only

With the static configuration in place, the powersave thresholds should be set to minimise the number of false triggers due to noise while maintaining good sensitivity. The default values provided should be good for most conditions. A larger saving can be made by adjusting the duty cycle via the Off-Time parameter, with a trade off being made against response time.

Dynamic switching of CMX994/CMX994A/CMX994E parameters can save further current during the energy sampling state of the powersave mode. The Low Power bit (and Enhanced Mode in the case of a CMX994E) can be automatically disabled during the energy sampling state and then restored to the host-configured value on exit. The CMX994A and CMX994E also allow for a single channel (I or Q) to be used in the energy sampling, reducing current further. Both of these options are configured in Programming Register P6.3 (see section 8.3.7).

6.5.16.3 Powersave Performance

The amount of current saved is shown in by Figure 24 which shows the variation in CMX994/A/E current with different "off" times. The two curves illustrate the difference in powersaving that can be achieved between the standard CMX994 and the CMX994A and CMX994E which allow the phase correction circuit to be disabled. The curves make use of the CMX994/CMX994A/CMX994E "LP" bit during powersave but it should be noted full RF performance is restored on exiting powersave.

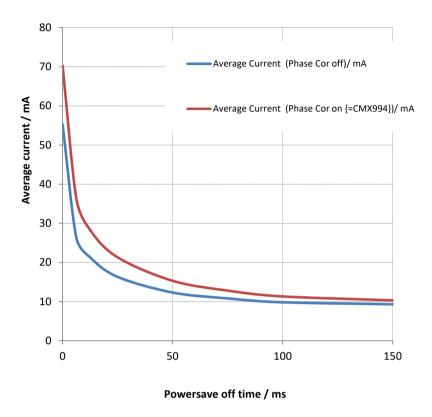


Figure 24 Effect of Powersave as a Function of "OFF" Time

The powersave operation has three states as described in section 6.5.16.1. The variation in powersave current is demonstrated by the currents shown in Table 14; each line in the table represents the powersave function deciding to continue in the powersaved state at each of the three possible decision points in the algorithm. The same effect is shown for "best case" and "worst case" scenarios as a function of "off" time in Figure 25.

Test Condition	Average Current (typical, CMX994/CMX994A/CMX994E only) / mA			
No signal	16.6			
+65dB adjacent channel signal	18.1			
Wideband signal (squelch closed)	38.3			

Table 14 Variation in Average Current Consumption with Different Powersave States / Test Conditions

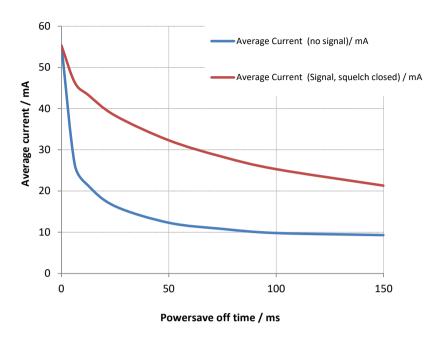


Figure 25 Effect of Powersave as a Function of "OFF" Time (Best and Worst Case)

The user can decide which of the available powersave functions to use. The range of powersaving available is shown in Table 15. Each successive row in the table adds an extra powersave mode.

Configuration "OFF" Time set at 25ms	Average Current (typical, CMX994/CMX994A/CMX994E only) / mA
Standard CMX994 Powersave	27.3
Add "LP" bit	24.3
Add phase correction off (CMX994A/CMX994E only)	19.3
Add I or Q channel off (CMX994A/CMX994E only)	16.3

Table 15 Variation in Average Current Consumption with Different Powersave Configurations

6.5.17 Data Transfer

Payload data is transferred from/to the host using the Tx and Rx FIFOs.

In Tx, data is loaded in blocks. Each block must be preceded by a word which contains the length of the block (in bits) in the lower byte, and a flag in b15 to indicate if this is the last block in the transmission. If the block contains a non-integer number of bytes, the LSBs of the final byte will be discarded.

In Rx, data is presented to the host in the Rx FIFO. Note that the initial 48-bit framesyn is NOT placed into the FIFO. When a byte containing a status symbol is placed into the fifo (every 72 over-air bits), the Rx Data Ready bit will be set in the IRQ Status - \$C6 read register. If the corresponding bit is set in the Interrupt Mask - \$CE write register then an IRQ will be issued.

6.5.18 CMX994 Pass-through

To allow the host to communicate directly with the CMX994 for test and configuration purposes, a pass-through mode allows any CMX994 C-BUS register to be written accessed as Program Block \$0F (see section 8.1.39). This mode uses the Programming (\$C8), and Program Block Address (\$C7) registers on the CMX7241/7341.

To write to the CMX994:

- Set the device to Idle mode (\$C1=\$0000)
- Wait for the Program Flag to be set (\$C6 b0)
- Write the CMX994 C-BUS address to the Program Block Address register (\$C7) with b15-8=\$0F
- Write the CMX994 data value to the Programming register (\$C8)
- Wait for the Program Flag to be set (\$C6 b0).

Note that it is NOT possible to read data back from the CMX994 using this interface.

When using the CMX994A or CMX994E, the Extended Rx Offset Register (\$17) is 16 bits wide. In order to access this register select 16-bit mode by setting b14 of the Program Block Address register (\$C7) (all other registers are 8 bits wide so b14 must be left at zero for any other register).

For example, writing \$4F17 to the Program Block Address register will access register \$17 on the CMX994A in 16-bit mode. The full 16 bits to write should then be written to the Programming Register (\$C8) in accordance with the register description.

6.6 Analogue PMR Description

6.6.1 Sub-Audio Processing

The filter used in the path can be set by the Program Register P2.0, either a 260Hz Chebyshev suitable for CTCSS or a 150Hz 4-pole Bessel for DCS.

An internal generator/detector is available for the 51 CTCSS tones shown in and the 83 DCS codes shown in . Squelch-tail elimination is provided by inverting the MOD outputs or executing a phase change in CTCSS mode or a 134Hz "turn-off tone" in DCS mode. The tone/code to be generated is set by the value in the Analogue Mode register (\$C2) in Tx mode and read from the AuxData and Analogue Status register (\$CC) in Rx mode (see section 8.1.35).

Support for external sub-audio detection and generation is provided using the CTCSS and DCS filters. The Filter bandwidths are selectable for:

- 134Hz DCS
- 150Hz DCS
- 180Hz DCS
- 260Hz CTCSS

6.6.2 Voice Processing

A set of Audio Processing blocks are available for use in Analogue mode:

- 300Hz HPF
- 12.5kHz channel filter or 25kHz channel filter
- Hard limiter with anti-splatter filter
- Pre-emphasis and De-emphasis
- Compander
- Scrambler
- Voice AGC
- Level adjust
- In-band audio generator/s in both Rx and Tx paths

The 12.5kHz channel filter (narrow) will be selected by default, the 25kHz filter (wide) can be enabled by setting P2.0:b0. Note that selecting 25kHz mode operation in I/Q mode will automatically inhibit C4FM operation due to the difference in receiver bandwidths. Parallel analogue / digital mode is only available in 12.5kHz mode.

6.6.3 300Hz HPF

This is designed to reject signals below 300Hz from the voice path so that sub-audio signalling can be inserted (in Tx) or removed (in Rx) as appropriate. It should be enabled whenever sub-audio signalling is required.

6.6.4 12.5kHz/25kHz Channel Filters

These are designed to meet the requirements of ETSI 300 296 for Voice signal processing and feature an upper roll-off at 2.55kHz and 3.0kHz respectively.

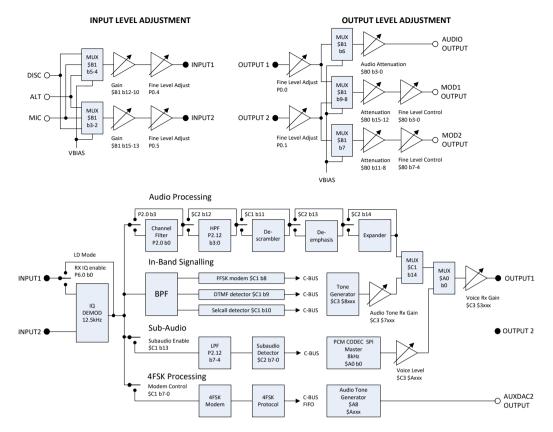
6.6.5 Hard Limiter

This is provided to limit the peak deviation of the radio signal to meet the requirements of ETSI EN 300 296. An anti-splatter filter is included to reduce the effects of any harmonic signals generated in the process. The limiter threshold can be set using P2.3.

6.6.6 Compander

A syllabic compressor/expander is provided, similar to that used in the 7031/7041-FI-1.x to increase the dynamic range of the Voice signal. The unity gain points for Tx and Rx can be set independently using P2.9 and P2.10.

6.6.7 Scrambler


A frequency inversion scrambler is provided to enable a basic level of privacy. The default inversion frequency is 3300Hz, but can be programmed using \$C3:1001b, however some loss of signal at the band edges may occur due to the channel filter roll-off.

6.6.8 Voice AGC

An automatic gain control system is provided in the MIC path, utilising the programmable gain settings of the Input 1 amplifier. When used in conjunction with the hard limiter function, this can compensate large variations in the MIC input signal without introducing significant distortion. The AGC threshold is programmable using P2.1. whilst the maximum gain setting and the decay timeout can be set using P2.2. When this feature is enabled, the host should not attempt to directly control the Input 1 gain setting.

6.6.9 Level Adjust

Independent level adjustments are provided using \$C3 register for the voice, in-band and sub-audio signals as shown in Figure 26.

Rx ROUTING AND CONTROL

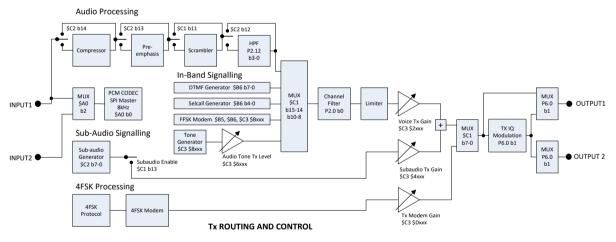


Figure 26 Rx and Tx Level Adjustments and Routing

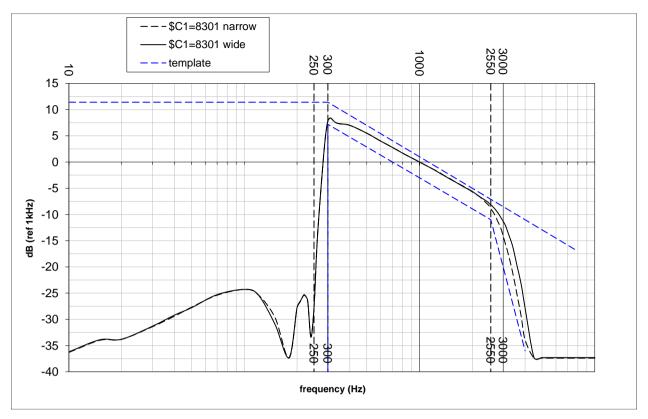


Figure 27 Rx Audio Response

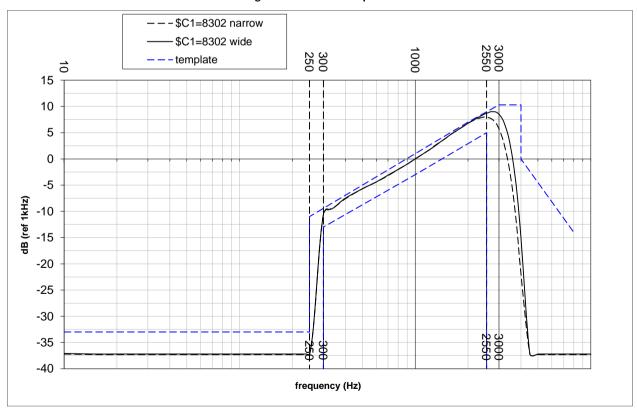


Figure 28 Tx Audio Response

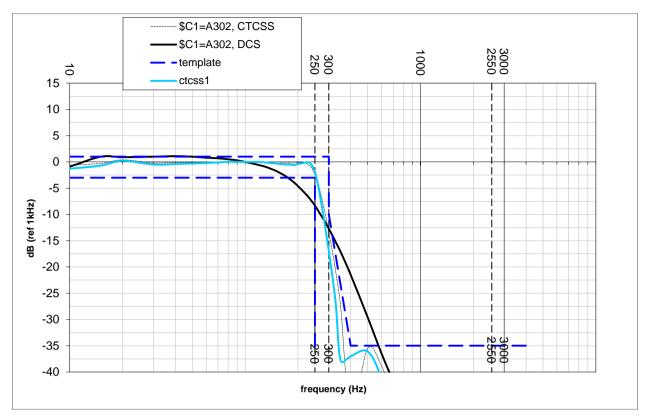


Figure 29 CTCSS and DCS filters

		Registe	er Value			Register Value					
DCS Code	tru	ıe	inve	rted	DCS Code	tre	ue	inve	rted		
	Decimal	Hex	Decimal	Hex		Decimal	Hex	Decimal	Hex		
no code	0	00	100	64	311	42	2A	142	8E		
23	1	01	101	65	315	43	2B	143	8F		
25	2	02	102	66	331	44	2C	144	90		
26	3	03	103	67	343	45	2D	145	91		
31	4	04	104	68	346	46	2E	146	92		
32	5	05	105	69	351	47	2F	147	93		
43	6	06	106	6A	364	48	30	148	94		
47	7	07	107	6B	365	49	31	149	95		
51	8	08	108	6C	371	50	32	150	96		
54	9	09	109	6D	411	51	33	151	97		
65	10	0A	110	6E	412	52	34	152	98		
71	11	ОВ	111	6F	413	53	35	153	99		
72	12	0C	112	70	423	54	36	154	9A		
73	13	0D	113	71	431	55	37	155	9В		
74	14	0E	114	72	432	56	38	156	9C		
114	15	OF	115	73	445	57	39	157	9D		
115	16	10	116	74	464	58	3A	158	9E		
116	17	11	117	75	465	59	3B	159	9F		
125	18	12	118	76	466	60	3C	160	Α0		
131	19	13	119	77	503	61	3D	161	A1		
132	20	14	120	78	506	62	3E	162	A2		

		Regist	er Value				Regist	er Value	
DCS Code	tru	ie	inve	rted	DCS Code	tru	ie	inve	rted
	Decimal	Hex	Decimal	Hex		Decimal	Hex	Decimal	Hex
134	21	15	121	79	516	63	3F	163	А3
143	22	16	122	7A	532	64	40	164	A4
152	23	17	123	7B	546	65	41	165	A5
155	24	18	124	7C	565	66	42	166	A6
156	25	19	125	7D	606	67	43	167	A7
162	26	1A	126	7E	612	68	44	168	A8
165	27	1B	127	7F	624	69	45	169	A9
172	28	1C	128	80	627	70	46	170	AA
174	29	1D	129	81	631	71	47	171	AB
205	30	1E	130	82	632	72	48	172	AC
223	31	1F	131	83	654	73	49	173	AD
226	32	20	132	84	662	74	4A	174	AE
243	33	21	133	85	664	75	4B	175	AF
244	34	22	134	86	703	76	4C	176	В0
245	35	23	135	87	712	77	4D	177	B1
251	36	24	136	88	723	78	4E	178	В2
261	37	25	137	89	731	79	4F	179	В3
263	38	26	138	8A	732	80	50	180	В4
265	39	27	139	8B	734	81	51	181	В5
271	40	28	140	8C	743	82	52	182	В6
306	41	29	141	8D	754	83	53	183	В7
					user defined	84	54	184	В8

Table 16 DCS Codes and Values

Register	Value	CTCSS tone	Register	Value	CTCSS tone
Decimal	Hex	Frequency	Decimal	Hex	Frequency
200	C8	Tx: no tone Rx: Tone Clone	228	E4	173.8
201	C9	67.0	229	E5	179.9
202	CA	71.9	230	E6	186.2
203	СВ	74.4	231	E7	192.8
204	CC	77.0	232	E8	203.5
205	CD	79.7	233	E9	210.7
206	CE	82.5	234	EA	218.1
207	CF	85.4	235	EB	225.7
208	D0	88.5	236	EC	233.6
209	D1	91.5	237	ED	241.8
210	D2	94.8	238	EE	250.3
211	D3	97.4	239	EF	69.3
212	D4	100.0	240	F0	62.5
213	D5	103.5	241	F1	159.8
214	D6	107.2	242	F2	165.5
215	D7	110.9	243	F3	171.3
216	D8	114.8	244	F4	177.3
217	D9	118.8	245	F5	183.5
218	DA	123.0	246	F6	189.9
219	DB	127.3	247	F7	196.6
220	DC	131.8	248	F8	199.5
221	DD	136.5	249	F9	206.5
222	DE	141.3	250	FA	229.1
223	DF	146.2	251	FB	254.1
224	EO	151.4	252	FC	user defined
225	E1	156.7	253	FD	Phase change
226	E2	162.2	254	FE	DCS turn-off
227	E3	167.9	255	FF	invalid tone

Table 17 CTCSS Codes and Values

CTCSS detector thresholds and bandwidth are selectable using P2.4. Use of the "split tones" (239 to 251) will require a smaller bandwidth to be used, otherwise the adjacent tone frequency may be detected instead.

CTCSS phase changes (greater than +/- 90 degrees) are indicated by code \$FD, and generated by writing to \$C3 whilst the CTCSS generator is active. The phase change detector is enabled using P2.0:b2.

6.7 FFSK Data Modem

The CMX7241/7341 supports 1200 baud FFSK data mode suitable for use with MPT1327 or similar systems. Selection of the FFSK mode is performed by bit 8 of the Mode register (\$C1). Detection of the selected In-band signalling mode can be performed in parallel with voice reception.

See:

- Mode Control \$C1 write
- C4FM Modem Configuration \$A1 write

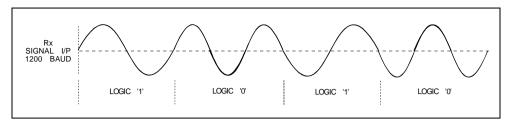


Figure 30 Modulating Waveforms for 1200 MSK/FFSK Signals

The table below shows the combinations of frequencies and number of cycles to represent each bit of data, for both baud rates

Baud Rate	Data	Frequency	Number of Cycles
1200 baud	1	1200Hz	one
	0	1800Hz	one and a half

Table 18 Data Frequencies for MPT1327 mode

Note: FFSK may be transmitted in conjunction with a CTCSS or DCS sub-audio component.

6.7.1 Receiving FFSK Signals

The CMX7241/7341 can decode incoming FFSK signals at 1200 and 2400 baud data rates. The desired rates can be configured by setting the Rx Mode in the FFSK Modem Format via the Analogue Control register (\$C3). The form of FFSK signals is shown in Figure 30. An FFSK transmission begins with a preamble sequence followed by a 16-bit Sync sequence and then the user data.

The received signal is filtered and data is extracted with the aid of a PLL to recover the clock from the serial data stream. The recovered data is stored in a 2 byte buffer and an interrupt issued to indicate received data is ready. Data is transferred over the C-BUS under host μ C control. The FFSK bit clock is not output externally.

The extracted data is compared with the 16-bit programmed Frame Sync pattern (default is \$CB23). An in-band IRQ will be flagged when the programmed Frame Sync pattern is detected. Once a valid Frame Sync pattern has been detected, the frame sync search algorithm is disabled; it may be re-started by the host disabling the FFSK bit of the Mode register (\$C1:b8) and then re-enabling it (taking note of the C-BUS latency time).

Separate sync sequences are available, SynC, SynD, SynT and SynX. SynT is automatically derived as the inverse of the SynC sequence. All other sync sequences are user programmable. Sync detects are reported with an in-band event IRQ and a code in the AuxData and Analogue Status register (\$CC). The FFSK RxRate bit in this register can be read to determine whether the detection was at 1200 or 2400 baud.

After frame synchronisation has been achieved, the following user data is made available in the RxData1 register, along with a DataRdy IRQ indication. In an MPT1327 system, the preceding SYS and CCS codes will also be reported in RxData3 and RxData4 (however, this is dependent on the timing of the signalling, the host should confirm the validity of the data before relying on it).

FFSK may be transmitted in conjunction with a CTCSS or DCS sub-audio component. The CMX7241/7341 will handle the sub-audio signals as previously described. If a sub-audio signal turns off during reception of FFSK, it is up to the host μ C to turn off the decoding as the device will continue receiving and processing the incoming signal until commanded otherwise by the host μ C.

The host μ C must keep track of the message length or otherwise determine the end of reception (e.g. by using sub-audio information to check for signal presence) and disable the demodulator at the appropriate time.

6.7.2 Transmitting FFSK Signals

When enabled, the modulator will begin transmitting the preamble data (defined in P1.0), followed by the selected sync sequence (defined in P1.0 and selected by b11-8 of the Analogue mode register (\$C2). Therefore, these registers should be programmed to the required values before transmission is enabled.

The modulation rate will be determined by the setting of Tx Mode in the FFSK Modem Format field of the Analogue Control register (\$C3). Changes to this setting will be not be applied until the next time the modem is enabled. The level of the FFSK signal generated can be controlled using the Audio Tone Tx Level field of the Analogue Control register (\$C3).

The CMX7241/7341 will issue a DataRdy IRQ, which the host should respond to by loading the user data it wishes to transmit.

The CMX7241/7341 generates its own internal data clock and converts the binary data into the appropriately phased frequencies, as shown in Figure 30 and . The binary data is taken from the Tx FIFO, most significant bit first. A DataRdy IRQ will be issued as each word is taken from the Tx FIFO. If the FIFO is empty the device will finish the transmission and indicate that the final data bit has left the chip by raising the TxDone IRQ, after which the host may power-down the RF circuitry and return the device to Idle mode as required.

6.8 Selcall Signalling

The CMX7241/7341 supports both Selcall and user-programmable in-band tones between 288 Hz and 3000 Hz. Note that if tones below 400 Hz are used, sub-audio signalling should be disabled and the 300 Hz HPF disabled.

By default, the device will load the CCIR Selcall tone set, however this may be over-written by the host with any valid set of tones within its operational range by use of the Programming register. This ensures that the device can remain compatible with all available tone systems in use. The CMX7241/7341 does not implement automatic repeat tone insertion or deletion: it is up to the host to correctly implement the appropriate Selcall protocol.

Selection of the Selcall mode is performed by bit 10 of the Mode register (\$C1). Detection of the selected in-band signalling mode can be performed in parallel with voice reception. See:

- Mode Control \$C1 write
- Aux Data and Analogue Status \$CC read

6.8.1 Receiving and Decoding Selcall Tones

Selcall tones can be used to flag the start of a call or to confirm the end of a call. If they occur during a call the tone may be audible at the receiver. When enabled, an interrupt will be issued when a signal matching a valid in-band tone changes state (i.e. on, off or a change to different tone).

The CMX7241/7341 implements the EEA tone set. Other addressing and data formats can be implemented by loading the Programming registers with the appropriate values. The frequency of each tone is defined in the Programming registers P4.0 to P4.15.

In receive mode the device scans through the tone table sequentially. The code reported will be the first one that matches the incoming frequency and b3 of the IRQ Status register, \$C6, will be asserted.

Adjustable decoder bandwidths and threshold levels are programmable via the Programming register. These allow certainty of detection to be traded against signal to noise performance when congestion or range limits the system performance.

		5:b4-0 (T	•	Freq.	Program Register	
Bina	ry	Dec Hex		(Hz)		
100	00000	0	0	1981	P4.0	
100	00001	1	1	1124	P4.1	
100	00010	2	2	1197	P4.2	
100	00011	3	3	1275	P4.3	
100	00100	4	4	1358	P4.4	
100	00101	5	5	1446	P4.5	
100	00110	6	6	1540	P4.6	
100	00111	7	7	1640	P4.7	
100	01000	8	8	1747	P4.8	
100	01001	9	9	1860	P4.9	
100	01010	10	Α	2400	P4.10	
100	01011	11	В	930	P4.11	
100	01100	12	С	2247	P4.12	
100	01101	13	D	991	P4.13	
100	01110	14	E	2110	P4.14	
100	01111	15	F	1055	P4.15	
100	10000	16	10	Null tone	-	
100	11111	31	1F	Unknown tone (Rx only)	-	

Table 19 Selcall Tones

Notes:

Normally, tone 14 is the repeat tone. This code must be used in transmit mode when the new code to be sent is the same as the previous one. e.g. to send '333' the sequence '3R3' should be sent, where 'R' is the repeat tone. When receiving Selcall tones, the CMX7241/7341 will indicate the repeat tone when it is received. It is up to the host to interpret and decode the tones accordingly.

6.8.2 Transmitting Selcall Tones

In Tx mode, only one in-band signalling mode may be selected at a time. The Selcall tone to be generated is loaded into the Selcall / DTMF TxData - \$B6 write using bits 4-0 - see Table 19.. The Selcall tone level is set using the Analogue Control register (\$C3) b4-0, using the Audio Tone Tx Level field.

6.8.3 Alternative Selcall Tone Sets

These may be loaded via the Programming register to locations P4.0 to P4.15. See details in the User Manual.

			Frequency (Hz)		
Tone Number	EIA	EEA	CCIR	ZVEI 1	ZVEI 2
0	600	1981	1981	2400	2400
1	741	1124	1124	1060	1060
2	882	1197	1197	1160	1160
3	1023	1275	1275	1270	1270
4	1164	1358	1358	1400	1400
5	1305	1446	1446	1530	1530
6	1446	1540	1540	1670	1670
7	1587	1640	1640	1830	1830
8	1728	1747	1747	2000	2000
9	1869	1860	1860	2200	2200
Α	2151	1055	2400	2800	885
В	2435	930	930	810	810
С	2010	2247	2247	970	740
D	2295	991	991	885	680
E	459	2110	2110	2600	970
F	NoTone	2400	1055	680	2600

Table 20 Alternative Selcall Tone Sets

6.9 DTMF Signalling

The CMX7241/7341 provides both DTMF encode and decode functions using the tone combinations shown in Table 21. Selection of DTMF mode is performed by bit 9 of the Mode Control register (\$C1). Detection of the selected in-band signalling mode can be performed in parallel with voice reception.

6.9.1 Reception and Decoding of DTMF

When a DTMF tone has been detected, b3 of the IRQ Status register (\$C6) will be set and the tone code will be available in: Aux Data and Analogue Status - \$CC read – see Table 21. This value will over-write any existing in-band tone value that may be present.

6.9.2 Transmission of DTMF

In Tx mode, only one in-band signalling mode may be selected at a time, DTMF is selected by setting b9 in the Mode Control register (\$C1). The DTMF signals to be generated are loaded into the Selcall / DTMF TxData - \$B6 write using bits 3-0 – see Table 21.

Single tone mode (\$B6:b4) generates only a single tone of the DTMF pair. The underlined value in Table 21 indicates which of the tones will be generated when this bit is enabled.

The DTMF level is set using the Analogue Control register (\$C3) (using the AudioTone Tx Level field) with optional twist set using \$B6:b6,5 – see Table 22.

Setting \$B6:b7 (No Tone) will mute the output of the DTMF generator. This can be used to generate a pause period between tones, thereby minimising the number of C-BUS writes required when generating a string of DTMF digits.

\$CC:b15- 13 (Rx)	\$CC:b12 – 8 (Rx) \$B6:b4-0 (Tx)		•	Freq. Low	Freq. High (Hz)	
Bina	ry	Key Hex		(Hz)		
010	00000	D	0	<u>941</u>	1633	
010	00001	1	1	<u>697</u>	1209	
010	00010	2	2	<u>697</u>	1336	
010	00011	3	3	<u>697</u>	1477	
010	00100	4	4	<u>770</u>	1209	
010	00101	5	5	<u>770</u>	1336	
010	00110	6	6	<u>770</u>	1477	
010	00111	7	7	<u>852</u>	1209	
010	01000	8	8	852	<u>1336</u>	
010	01001	9	9	852	<u>1477</u>	
010	01010	0	Α	941	<u>1336</u>	
010	01011	*	В	941	<u>1209</u>	
010	01100	#	С	941	<u>1447</u>	
010	01101	Α	D	697	<u>1663</u>	
010	01110	В	E	770	<u>1663</u>	
010	01111	С	F	852	<u>1663</u>	
010	10000	х	х	Null tone (Rx	only)	

Table 21 DTMF Tone Pairs

b6,5	Twist - dB
00	0
01	-2
10	- <u>2</u>
	7
11	-6

Table 22 DTFM Twist

6.10 Squelch Operation

Many limiter/discriminator chips provide a noise-quieting squelch circuit around an op-amp configured as a filter. This signal is conventionally passed to a comparator to provide a digital squelch signal, which can be routed directly to one of the CMX7241/7341's GPIO pins or to the host. However with the CMX7241/7341, the comparator and threshold operations can be replaced by one of the AuxADCs with programmable thresholds and hysteresis functions. See:

- IRQ Status \$C6 read
- C4FM Modem Configuration \$A1 write

Note: This functionality is not necessary in I/Q mode as squelch detection is executed within the CMX7241/7341 signal processing chain, however the AuxADC functionality remains available.

6.11 GPIO Pin Operation

The CMX7241/7341 provides four GPIO pins: RXENA, TXENA, GPIOA and GPIOB.

RXENA and TXENA are configured to reflect the Tx/Rx state of the Mode register under control of the Tx Sequencer. These lines should be pulled to their inactive state by 47k Ohm resistors. This will ensure that the signals are in an inactive state whilst the FI loads, and also allows the FI to determine if they should be driven active high (CMX994 compatible) or active low (for backwards compatibility with the 7141 series).

Note that RXENA and TXENA will not change state until the relevant mode change has been executed by the CMX7241/7341. This is to allow the host sufficient time to load the relevant data buffers and the CMX7241/7341 time to encode the data required prior to its transmission. There is thus a fixed time delay between the GPIO pins changing state and the data signal appearing at the MOD output pins. During the power-on sequence (until the FI has completed its load sequence) these pins have only a weak pull-up applied to them, so care should be taken to ensure that any loading during this period does not adversely affect the operation of the unit.

GPIOA and GPIOB can either be used as serial clock and data signals when separate serial ports are required (see section 4.4 Serial Port Interfaces), can be host programmable for input or output, or can be assigned as part of the Tx sequencer operation (CMX7241 only). The mode for each pin is set in Program block 6.0.

The default state is input, high level. When set for input, the values can be read back using the Modem Status register, \$C9. In output mode the value for the GPIO pin is written via the Aux Function Control register, \$A8.

The GPIOA and GPIOB functions can also be relocated to use the SYSCLK1 and SYSCLK2 pins. This allows the GPIOA or GPIOB functionality to still be used while the alternate SPI configuration is selected.

6.12 Auxiliary ADC Operation

The inputs to the two auxiliary ADCs can be independently routed from any of the signal input pins under control of the AuxADC Control register, \$93. Conversions will be performed as long as a valid input source is selected. To stop the ADCs, the input source should be set to 'off'. Register \$C0, b6, BIAS, must be enabled for auxiliary ADC operation.

Averaging can be applied to the ADC readings by selecting the relevant bits in the AuxADC Control register, \$93, the length of the averaging is determined by the value in the AuxADC Control register, \$93, and defaults to a value of 0. This is a rolling average system such that a proportion of the current data will be added to the last average value.

For an average value of:

- 0 = 50% of the current value will be added to 50% of the last average value
- 1 = 25% of the current value will be added to 75% of the last average value
- 2 = 12.5% etc
- 7 = 0.78125% of input sample + 99.21875% of saved average

The maximum useful value of this field is 7.

High and Low thresholds may be independently applied to both ADC channels (the comparison is applied after averaging, if this is enabled) and an IRQ generated the first time a rising edge passes the High threshold or a falling edge passes the Low threshold, see Figure 31. A high threshold IRQ re-arms the low threshold interrupt and vice-versa. The thresholds are programmed using \$94-\$97. See Figure 31.

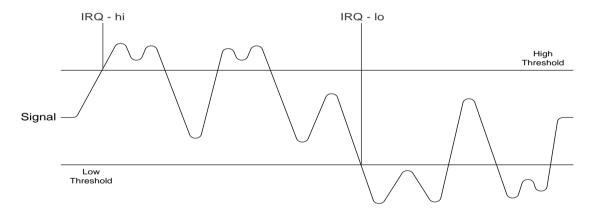


Figure 31 AuxADC IRQ Operation

Auxiliary ADC data is read back in the Aux 1 Data registers (\$A9 and \$AA) and includes the threshold status as well as the actual conversion data (subject to averaging, if enabled).

See:

- Aux Config \$CD write
- AuxADC1 and 2 Data \$D6 and \$D7 read

6.13 Auxiliary DAC/RAMDAC Operation

The three auxiliary DAC channels are programmed via the AuxDAC Data registers, \$30 to \$33. (Note that AuxDAC channel 1 is allocated to the RAMDAC which will automatically output a pre-programmed profile at a programmed rate under control of the Tx Sequencer. The default profile is a raised cosine (see , but this may be over-written with a user-defined profile by writing to Programming register P7.0-63. The gain of the profile may be adjusted by writing to the RAMDAC Attenuator (\$84) and a fixed offset may be applied using the RAMDAC Offset (\$85).

The RAMDAC operation is only available in Tx mode and, to avoid glitches in the ramp profile, it is important not to change to Idle or Rx mode whilst the RAMDAC is still ramping. An external R-C network may be required to remove any "step" noise from the output.

The AuxDAC outputs hold the user-programmed level during a powersave operation if left enabled, otherwise they will return to zero. Updating an AuxDAC is performed by writing to the relevant AuxDAC register (\$30-\$33), however, care should be taken to ensure that the AuxDAC is not currently in use by other functions (e.g RAMDAC, tone gen) as access will not be possible until the function is disabled. Any writes during this time will be discarded. On disabling RAMDAC or tone generator mode the previous enable state and level will be automatically restored by the AuxDAC.

See:

- Aux Function Control \$A8 write
- AuxDAC1-4 Data \$30 to \$33 write.

6.14 Digital System Clock Generators

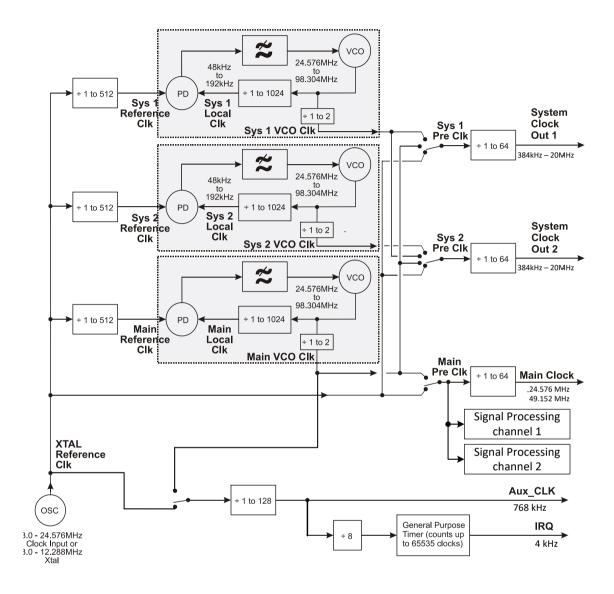


Figure 32 Digital Clock Generation Schemes

The CMX7241/7341 includes a two-pin crystal oscillator circuit. This can either be configured as an oscillator, as shown in section 4.1 or the XTAL/CLK input can be driven by an externally generated clock. The crystal (Xtal) source frequency can go up to 12.288MHz (or a clock source frequency up to 24.576MHz), but a 19.2MHz oscillator is assumed by default for the functionality provided in the CMX7241/7341.

6.14.1 Main Clock Operation

A digital PLL is used to create the Main Clock (nominally 24.576MHz in Tx, 49.152MHz in Rx) for the internal sections of the CMX7241/7341. At the same time, other internal clocks are generated by division of either the Xtal Reference Clock or the Main Clock. These internal clocks are used for determining the sample rates and conversion times of A-to-D and D-to-A converters, running a General Purpose (GP) Timer and the signal processing block. In particular, it should be noted that in Idle mode the setting of the GP Timer divider directly affects the C-BUS latency (with the default values this is nominally $250\mu s$).

The CMX7241/7341 defaults to the settings appropriate for a 19.2MHz oscillator, however if other frequencies are to be used then the Program Block registers P3.13 to P3.21 will need to be programmed appropriately at power-on. This flexibility allows the device to re-use an external clock source, so reducing total cost and potential noise sources. A table of common values is provided in Table 7.

See:

Block 3: Tx Sequencer and Clock Settings

6.14.2 **System Clock Operation**

Two System Clock outputs, SYSCLK1 and SYSCLK2, are available to drive additional circuits, as required. These are digital phase locked loop (PLL) clocks that can be programmed via the System Clock registers with suitable values chosen by the user. The System Clock PLL Configure registers (\$AB and \$AD) control the values of the VCO Output divider and Main Divide registers, while the System Clock Ref. Configure registers (\$AC and \$AE) control the values of the Reference Divider and signal routing configurations. The PLLs are designed for a reference frequency of 96kHz. If not required, these clocks can be independently powersaved. The clock generation scheme is shown in the block diagram of Figure 32. Note that at power-on, SYSCLK1 will be active, directly coupled to the XTAL/CLK signal.

See:

- SYSCLK 1 and SYSCLK 2 PLL Data \$AB, \$AD write
- SYSCLK 1 and SYSCLK 2 REF \$AC, \$AE write.

6.15 **Signal Level Optimisation**

The internal signal processing of the CMX7241/7341 will operate with wide dynamic range and low distortion only if the signal level at all stages in the signal processing chain is kept within the recommended limits. For a device working from a 3.3V ±10% supply, the maximum signal level which can be accommodated without distortion is [(3.3 x 90%) - (2 x 0.3V)] Volts pk-pk = 838mV rms, assuming a sine wave signal. This should not be exceeded at any stage.

6.15.1 **Transmit Path Levels**

For the maximum signal out of the MOD1 and MOD2 attenuators, the signal level at the output of the Modem block is set to be 0dB, The MOD1 and MOD2 Fine Level Control (\$80¹) has a maximum attenuation of 1.8dB and no gain, whereas the Analogue Output Gain (\$B0) has a variable attenuation of up to +40.0dB and no gain.

¹ Note that C-BUS register \$80 is an 8-bit register.

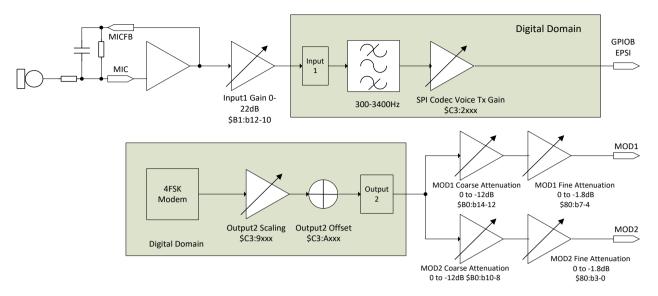


Figure 33 Tx Levels

6.15.2 Receive Path Levels

The Coarse Input adjustment (\$B1) has a variable gain of up to +22.4dB and no attenuation. In LD mode with the lowest gain setting (0dB), the maximum allowable input signal level at the DISCFB pin would be 838mV rms. This signal level is an absolute maximum, which should not be exceeded.

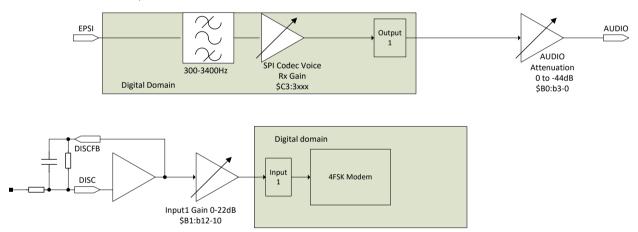


Figure 34 Rx Levels (LD mode)

In I/Q mode CMX7241/7341 automatically manages the gain control settings to optimise signal levels.

6.16 Tx Spectrum Plots

The following figure shows the Tx spectrum when using a suitable signal generator as measured on a spectrum analyser using the CMX7241/7341 internal PRBS generator. Note that the I/Q mode is sensitive to variations in dc offset in the modulation path and these must be minimised.

To Follow

Figure 35 Tx Modulation Spectra – 4.8kbps

7 Performance Characteristics

7.1 Electrical Performance

7.1.1 Absolute Maximum Ratings

Exceeding these maximum ratings can result in damage to the device.

	Min.	Max.	Unit
Supply: DV _{DD} - DV _{SS}	-0.3	4.0	V
AV _{DD} - AV _{SS}	-0.3	4.0	V
Voltage on any pin to DV _{SS}	-0.3	DV _{DD} + 0.3	V
Voltage on any pin to AV _{SS}	-0.3	AV _{DD} + 0.3	V
Current into or out of any power supply pin (excluding BIAS) (i.e. VDEC, AVDD, AVSS, DVDD, DVSS)	-30	+30	mA
Current into or out of any other pin	-20	+20	mA
Voltage differential between power supplies:			
DV_{DD} and AV_{DD}	0	0.3	V
DV _{SS} and AV _{SS}	0	50	mV

L4 Package (48-pin LQFP)	Min.	Max.	Unit
Total Allowable Power Dissipation at T _{AMB} = 25°C	_	1600	mW
Derating	_	16	mW/°C
Storage Temperature	-55	+125	°C
Operating Temperature	-40	+85	°C

_	1750	mW
-	17.5	mW/°C
-55	+125	°C
-40	+85	°C
	-55	-55 +125

© 2017 CML Microsystems Plc Page 59 D/7241_7341_FI4.x/1

7.1.2 Operating Limits

Correct operation of the device outside these limits is not implied.

Notes	Min.	Max.	Unit
	3.0	3.6	V
	3.0	3.6	V
2	1.70	1.90	V
	-40	+85	°C
1	3.0	12.288	MHz
1	3.0	24.576	MHz
	2 1 1 1	3.0 2 1.70 -40 1 3.0	3.0 3.6 2 1.70 1.90 -40 +85 1 3.0 12.288

Notes:

- 1 Figures here represent the capability of the device. For use with this FI, however, an external CLK of 19.2MHz is required.
- The V_{DEC} supply is automatically derived from DV_{DD} by the on-chip voltage regulator.

7.1.3 Operating Characteristics

For the following conditions unless otherwise specified:

External components as recommended in Figure 2 and Figure 3. Maximum load on digital outputs = 30pF.

Oscillator Frequency = 19.2MHz $\pm 0.01\%$ (100ppm); $T_{AMB} = -40$ °C to +85°C

 $AV_{DD} = DV_{DD} = 3.0V \text{ to } 3.6V$

 $V_{DEC} = 1.8V$

Reference Signal Level = 308mVrms at 1kHz with AV_{DD} = 3.3V

Signal levels track with supply voltage, so scale accordingly

Signal to Noise Ratio (SNR) in bit rate bandwidth

Input stage gain = OdB. Output stage attenuation = OdB

Current consumption figures quoted in this section apply to the device when loaded with 7241/7341FI-4.0.x only. The use of other CMX7241/7341 Function Images can modify the current consumption of the device.

DC Parameters	Notes	Min.	Тур.	Max.	Unit
Supply Current	21				
All Powersaved					
DI _{DD}		-	TBD	100	μΑ
Al _{DD}		_	TBD	20	μΑ
Idle Mode	22				
DI _{DD}		-	TBD	_	mA
Al _{DD}	23	_	TBD	-	mA
Rx Mode (LD Mode)	22				
DI _{DD} (4.8kbps – search for FS)		_	TBD	-	mA
DI _{DD} (4.8kbps – FS found)		_	TBD	_	mA
Al _{DD}		_	TBD	-	mA
Rx Mode (I/Q Mode)	22				
DI _{DD} (4.8kbps – search for FS)		_	TBD	-	mA
DI _{DD} (4.8kbps – FS found)		_	TBD	_	mA
Al _{DD}		_	TBD	_	mA
Tx Mode	22				
DI _{DD} (4.8kbps – two-point)		_	TBD	-	mA
DI _{DD} (4.8kbps – I/Q)		_	TBD	_	mA
AI_{DD} ($AV_{DD} = 3.3V$)		_	TBD	-	mA
Additional Current for each Auxiliary System Clock (output running at 4MHz)					
DI _{DD} (DV _{DD} = 3.3V, V _{DEC} = 1.8V)		-	250	-	μΑ
Additional Current for each Auxiliary ADC					
DI _{DD} (DV _{DD} = 3.3V, V _{DEC} = 1.8V)		-	50	-	μΑ
Additional Current for each Auxiliary DAC					
AI_{DD} ($AV_{DD} = 3.3V$)		_	200	_	μΑ

Notes: 21 T_{AMB} = 25°C: not including any current drawn from the device pins by external circuitry.

22 System Clocks: auxiliary circuits disabled, but all other digital circuits (including the Main Clock PLL) enabled.

23 May be further reduced by power-saving unused sections

	Notes	Min.	Тур.	Max.	Unit
	24				
		70%	-	_	DV _{DD}
		_	-	30%	DV _{DD}
_{DD})		_	-	40	μΑ
SS)		-40	-	_	μΑ
uts					
C-BUS Interface and Logic Inputs Input Logic 1		70%	_	_	DV _{DD}
Input Logic 0		-	-	30%	DV _{DD}
Input Leakage Current (Logic 1 or 0)		-1.0	_	1.0	μΑ
Input Capacitance		_	_	7.5	pF
tputs					
(I _{OH} = 2mA)		90%	_	_	DV _{DD}
(I _{OL} = -5mA)		_	_	10%	DV _{DD}
rent		_	_	10	μΑ
ut = DV _{DD})		-1.0	_	+1.0	μΑ
REPLY_DATA (output HiZ)		-1.0	-	+1.0	μΑ
	25				
vrt AV _{DD} /2 (I _{OL} < 1μA)		-	±2%	-	AV _{DD}
		_	22	_	kΩ
	tputs (I _{OH} = 2mA) (I _{OL} = -5mA) rent ut = DV _{DD})	24 (DDD) (SSS) (Duts (Logic 1 or 0) (IOH = 2mA) (IOL = -5mA) (rent (ut = DVDD) (tput HiZ)	24	24	24

Notes:

24 Characteristics when driving the XTAL/CLK pin with an external clock source.

Applies when utilising V_{BIAS} to provide a reference voltage to other parts of the system. When using V_{BIAS} as a reference, V_{BIAS} must be buffered. V_{BIAS} must always be decoupled with a capacitor as shown in Figure 2 and Figure 3.

AC Parameter	rs		Notes	Min.	Тур.	Max.	Unit
XTAL/CLK Inp	ut						
'High' P	ulse Width		31	15	_	_	ns
'Low' Ρι	ulse Width		31	15	_	_	ns
Input In	npedance (at 6.144MHz	2)					
	Powered-up	Resistance		_	150	_	kΩ
		Capacitance		_	20	_	pF
	Powered-down	Resistance		-	300	_	kΩ
		Capacitance		_	20	_	pF
Xtal Sta	Xtal Start-up Time (from powersave)			_	20	_	ms
System Clk 1/	2 Outputs						
XTAL/CI	LK input to CLOCK_OUT	timing:					
	(in high to	out high)	32	_	15	_	ns
	(in low to	out low)	32	_	15	_	ns
'High' P	ulse Width		33	76	81.38	87	ns
'Low' Pu	'Low' Pulse Width		33	76	81.38	87	ns
V _{BIAS}							
	Time (from powersave	2)		_	30	_	ms

Microphone, Alternate and Discriminator Inputs (MIC, ALT, DISC)					
Input Impedance	34		>10		MΩ
input impedance	34	_	>10	_	IVISZ
Maximum Input Level (pk-pk)	35	_	_	80%	AV _{DD}
Load Resistance (feedback pins)		80	_	_	kΩ
Amplifier Open Loop Voltage Gain					
(I/P = 1mVrms at 100Hz)		_	80	_	dB
Unity Gain Bandwidth		_	1.0	_	MHz
Programmable Input Gain Stage	36				
Gain (at OdB)	37	-0.5	0	+0.5	dB
Cumulative Gain Error					
(wrt attenuation at 0dB)	37	-1.0	0	+1.0	dB

Notes:	31	Timing for an external input to the XTAL/CLK pin.
	32	XTAL/CLK input driven by an external source.
	33	6.144MHz Xtal fitted and 6.144MHz output selected (scale for 19.2MHz).
	34	With no external components connected, measured at DC.
	35	Centred about $AV_{DD}/2$; after multiplying by the gain of input circuit (with external components connected).
	36	Gain applied to signal at output of buffer amplifier: DISCFB, ALTFB or MICFB.
	37	Design Value. Overall attenuation input to output has a tolerance of OdB ±1.0dB.

AC Parameters		Notes	Min.	Тур.	Max.	Unit
Modulator Outputs 1/2 and Audio (MOD 1, MOD 2, AUDIO)	Output					
Power-up to Output Stable	· · · · · · ·		_	50	100	μs
Modulator Attenuators						
Attenuation (at 0dB)		43	-1.0	0	+1.0	dB
Cumulative Attenuation Erro	r					
(wrt attenuation at OdB)			-0.6	0	+0.6	dB
Output Impedance	Enabled	42	_	600	_	Ω
	Disabled	42	_	500	_	kΩ
Output Current Range (AV _{DD}	= 3.3V)		_	_	±125	μΑ
Output Voltage Range		44	0.5	_	AV _{DD} -0.5	V
Load Resistance			20	_	_	kΩ
Audio Attenuator						
Attenuation (at 0dB)		43	-1.0	0	+1.0	dB
Cumulative Attenuation Erro	r					
(wrt attenuation at 0d	3) J		-1.0	0	+1.0	dB
Output Impedance	Enabled	42	_	600	_	Ω
	Disabled	42	_	500	_	kΩ
Output Current Range (AV _{DD}	= 3.3V)		_	_	±125	μΑ
Output Voltage Range		44	0.5	_	AV _{DD} -0.5	٧
Load Resistance			20	_	_	kΩ

Notes:

- Power-up refers to issuing a C-BUS command to turn on an output. These limits apply only if V_{BIAS} is on and stable. At power supply switch-on, the default state is for all blocks, except the XTAL/CLK and C-BUS interface, to be in placed in powersave mode.
- 42 Small signal impedance, at $AV_{DD} = 3.3V$ and $T_{AMB} = 25$ °C.
- With respect to the signal at the feedback pin of the selected input port.
- Centred about AV_{DD}/2; with respect to the output driving a 20kΩ load to AV_{DD}/2.

AC Parameters (cont.)	Notes	Min.	Тур.	Max.	Unit
Auxiliary Signal Inputs (Aux ADC 1 to 4)					
Source Output Impedance	51	-	_	24	kΩ
Auxiliary 10 Bit ADCs					
Resolution		_	10	_	Bits
Maximum Input Level (pk-pk)	54	_	_	80%	AV _{DD}
Conversion Time	52	_	250	-	μs
Input Impedance					
Resistance	57	_	>10	_	МΩ
Capacitance		_	5	_	pF
Zero Error	55	0	_	TBA	mV
Integral Non-linearity		_	_	TBA	LSBs
Differential Non-linearity	53		_	TBA	LSBs
Auxiliary 10 Bit DACs					
Resolution		_	10	_	Bits
Maximum Output Level (pk-pk), no load	54	80%	_	_	AV _{DD}
Zero Error	56	0	_	TBA	mV
Resistive Load		5	_	-	kΩ
Integral Non-linearity		_	_	TBA	LSBs
Differential Non-linearity	53	_	_	TBA	LSBs

Notes:	51	Denotes output impedance of the driver of the auxiliary input signal, to ensure
		A 1 to 1 10 to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

- <1 bit additional error under nominal conditions.
- With an auxiliary clock frequency of 6.144MHz.
- Guaranteed monotonic with no missing codes.
- 54 Centred about AV_{DD}/2.
- Input offset from a nominal $V_{\mbox{\footnotesize{BIAS}}}$ input, which produces a \$0200 ADC output.
- Output offset from a \$0200 DAC input, measured with respect to nominal $V_{\mbox{\footnotesize{BIAS}}}$ output.
- 57 Measured at dc.

7.1.4 Parametric Performance

For the following conditions unless otherwise specified:

External components as recommended in Figure 2 and Figure 3. Maximum load on digital outputs = 30pF.

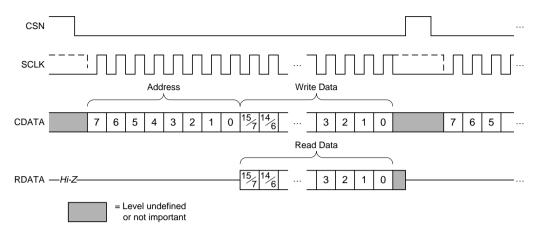
Oscillator Frequency = 19.2MHz $\pm 0.01\%$ (100ppm); $T_{AMB} = -40$ °C to +85°C.

 $AV_{DD} = DV_{DD} = 3.0V$ to 3.6V. Reference Signal Level = 308mVrms at 1kHz with $AV_{DD} = 3.3V$.

Signal levels track with supply voltage, so scale accordingly.

Signal-to-Noise Ratio (SNR) in bit rate bandwidth.

Input stage gain = OdB, Output stage attenuation = OdB.


All figures quoted in this section apply to the device when loaded with FI-4.0.x only. The use of other CMX7241/7341 Function Images can modify the parametric performance of the device.

C4FM Modem	Notes	Min.	Тур.	Max.	Unit
Modem Symbol Rate		-	4800	-	symbols /s
Modulation			C4FM		
Filter (RC) Alpha		_	0.2	_	
Tx Output Level (MOD1, MOD2, two-point)	60	_	2.88	_	Vpk-pk
Tx Output Level (MOD1, MOD2, I/Q)	60	_	2.20	_	Vpk-pk
Tx Adjacent Channel Power (MOD1, MOD2, PRBS)	61, 63	TBD	_	_	dB
Rx Co-channel Rejection	61, 63	TBD	TBD	_	dB
Rx Input Level		_	_	838	mVrms
Rx Input DC Offset		0.5	_	AV _{DD} -0.5	V

Notes:

- 60 Transmitting continuous default preamble.
- 61 See user manual section 6.16.
- 62 Measured at baseband radio design will affect ultimate product performance.
- 63 For a 12.5kHz/9.6kbps channel.

7.2 C-BUS Timing

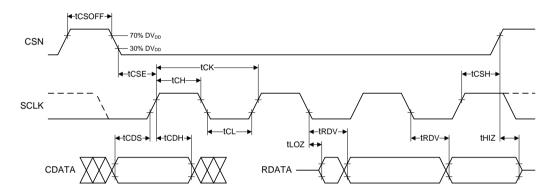
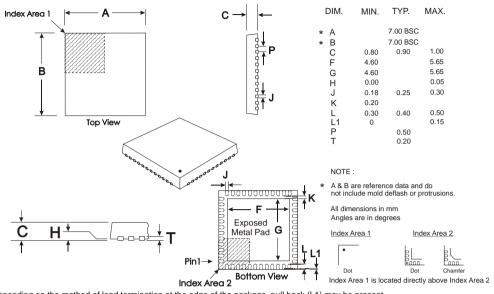


Figure 36 C-BUS Timing


AC Parameters		Notes	Min.	Тур.	Max.	Unit
C-BUS T	iming					
Input pin rise/fall time (10% - 90% of DV _{DD})			-	-	3 30	ns pF
Capacitive load on RDATA and IRQN						
tCSE	CSN enable to SCLK high time		40	_	-	ns
tCSH	Last SCLK high to CSN high time		40	_	_	ns
tLOZ	SCLK low to RDATA output enable time		0	_	-	ns
tHIZ	CSN high to RDATA high impedance		_	_	30	ns
tCSOFF	CSN high time between transactions		40	_	_	ns
tCK	SCLK cycle time		100	_	_	ns
tCH	SCLK high time		40	_	_	ns
tCL	SCLK low time		40	_	_	ns
tCDS	CDATA setup time		25	_	_	ns
tCDH	CDATA hold time		25	_	_	ns
tRDV	SCLK low to RDATA valid time		0	_	35	ns

Notes:

- 1. Depending on the command, 1 or 2 bytes of CDATA are transmitted to the peripheral MSB (Bit 7) first, LSB (Bit 0) last. RDATA is read from the peripheral MSB (Bit 7) first, LSB (Bit 0) last.
- 2. Data is clocked into the peripheral on the rising SCLK edge.
- 3. Commands are acted upon at the end of each command (rising edge of CSN).
- 4. To allow for differing μ C serial interface formats C-BUS compatible ICs are able to work with SCLK pulses starting and ending at either polarity.
- 5. Maximum 30pF load on IRQN pin and each C-BUS interface line.

These timings are for the latest version of C-BUS and allow faster transfers than earlier C-BUS timing specification. The CMX7241/7341 can be used in conjunction with devices that comply with the slower timings, subject to system throughput constraints.

7.3 Packaging.

Depending on the method of lead termination at the edge of the package, pull back (L1) may be present.

L minus LT to be equal to, or greater than 0.3mm
The underside of the package has an exposed metal pad which should ideally be soldered to the pcb to enhance the thermal conductivity and mechanical strength of the package fixing. Where advised, an electrical connection to this metal pad may also be required

Figure 37 Mechanical Outline of 48-lead VQFN (Q3)

Order as part no. CMX7241Q3 or CMX7341Q3

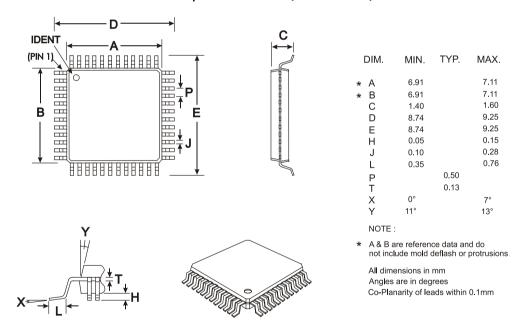


Figure 38 Mechanical Outline of 48-pin LQFP (L4)

Order as part no. CMX7241L4

As package dimensions may change after publication of this datasheet, it is recommended that you check for the latest Packaging Information from the Design Support/Package Information page of the CML website: [www.cmlmicro.com].

About FirmASIC®

CML's proprietary FirmASIC® component technology reduces cost, time to market and development risk, with increased flexibility for the designer and end application. FirmASIC® combines Analogue, Digital, Firmware and Memory technologies in a single silicon platform that can be focused to deliver the right feature mix, performance and price for a target application family. Specific functions of a FirmASIC® device are determined by uploading its Function Image™ during device initialization. New Function Images™ may be later provided to supplement and enhance device functions, expanding or modifying end-product features without the need for expensive and time-consuming design changes. FirmASIC® devices provide significant time to market and commercial benefits over Custom ASIC, Structured ASIC, FPGA and DSP solutions. They may also be exclusively customised where security or intellectual property issues prevent the use of Application Specific Standard Products (ASSP's).

FirmASIC and Function Image are trademarks of CML Microsystems PLC AMBE+2 is a trademark of Digital Voice Systems Inc.

Handling precautions: This product includes input protection, however, precautions should be taken to prevent device damage from electro-static discharge. CML does not assume any responsibility for the use of any circuitry described. No IPR or circuit patent licences are implied. CML reserves the right at any time without notice to change the said circuitry and this product specification. CML has a policy of testing every product shipped using calibrated test equipment to ensure compliance with this product specification. Specific testing of all circuit parameters is not necessarily performed.

United Kingdom p: +44 (0) 1621 875500

e: sales@cmlmicro.com techsupport@cmlmicro.com

Singapore p: +65 62888129 e: sg.sales@cmlmicro.com sg.tech support@cmlmicro.com

United States p: +1336 744 5050 e: us.sales@cmlmicro.com us. tech support @cml micro.com

www.cmlmicro.com